Lecture 41 Gas Diffusion and Transport

HN Mayrovitz PhD mayrovit@nova.edu drmayrovitz.com

O₂ delivered and CO₂ removed

For every ml of O_2 used ≈ 0.8 ml CO_2 produced

Dead Space

- Anatomic (Airway) Dead Space
 = No gas exchange → ADS
- Alveolar Dead Space (ALDS)
 - Sum of alveolar volumes that are ventilated but receive little or no blood flow
- Physiological Dead Space (PDS)

 Amount of each TV that does
 NOT participate in gas exchange
 PDS = ADS + ALDS

$PDS = TV \times (1 - [P_E CO_2 / P_a CO_2])$

 $P_aCO_2 = CO_2$ tension in arterial blood $P_ECO_2 = CO_2$ tension in expired air

If $CO_2 = 0 \rightarrow PECO_2 = 0$ then no gas exchange has occurred and all TV = Dead Space

If $CO_2 > 0 \rightarrow PECO_2 > 0$ then Some gas exchange has occurred and only some of TV = Dead Space

The more CO₂ there is relative to arterial blood the less is the dead space

Gas dynamics

Equilibrates at ~ 1/3 capillary length

Unloading O₂ to Tissues

Picking Up CO₂ from Tissues

Diffusional Processes

Basic Diffusion Processes

Lung Diffusing Capacity

D_L considers all factors that effect whole lung Alveolar to Blood diffusion

 $D_{L} = \frac{m O_{2}/min \text{ from alveoli to blood}}{(alveolar) P_{A_{O2}} - P_{a_{O2}} (arterial)}$

Factors Decreasing D_L

Diffusion Distance

- Alveolar Wall Thickening
- •Alveoli-Capillary separation by:

edema, exudate or fibrous tissue

Surface Area

- Fewer functioning capillaries
- Fewer functioning alveoli
- Disrupt normal alveolar architecture

Red Blood Cells and Diffusion Resistance

- Decreased rbc membrane permeability
- Decreased Hb O₂ affinity
- Decreased total amount of Hb available

Diffusion and Capillary Blood Oxygenation

Interactive MCQ

An SO₂ measurement reveals that a patient's blood is near 100% saturated, but that her hemoglobin is only 10 g/100 ml blood.

Her blood oxygen <u>CONTENT</u> (mIO_2/dI) is closest to which of the following? (60 sec)

O₂ Binding-Release Curve Shifting

Temperature

Hotter: Facilitates O₂ Release
Less Saturation for same P_{O2}
More P_{O2} for same saturation

pH and CO₂ Effects

2.3-diphosphoglycerate (DPG) DPG Regulates RBC's Affinity for O₂

• Binds to Hb \rightarrow More DPG \rightarrow Less affinity *More DPG facilitates O*₂ *release* (P₅₀ \rightarrow right) Easier to deliver O₂ to tissue

• Less DPG (P50 → left)

Carbon Monoxide Effects

- Affinity of CO for Hb ~210x O₂; 0.1% CO results in 50% HbCO
- Because of low CO tension may take ~1-2 hours to equilibrate

CO₂ vs. O₂ Association Curves

Acid-Base Issues in Brief

Acid Base Issues in Brief: Henderson-Hasselbalch

pH =
$$pK_A + log[(HCO_3^-)/(0.03P_{CO2})] = 7.4$$

6.1
Normal Ratio = 20

Deviations in the ratio from 20 alter blood pH

- Respiratory Acidosis
 Respiratory Alkalosis
 Metabolic Acidosis
 Metabolic Alkalosis

Respiratory Acidosis \rightarrow Metabolic Compensation

Low alveolar ventilation \rightarrow + PCO2 \rightarrow Reduced ratio \rightarrow Decreased pH

 $pH \propto \frac{HCO3^{-}}{PCO_2}$

Renal Compensation to Respiratory and/or non-Renal Acidosis

Respiratory Alkalosis \rightarrow Metabolic Compensation

Hyperventilation at altitude \rightarrow - PCO2 \rightarrow Increased ratio \rightarrow Increased pH

 $pH \propto \frac{HCO3^{-}}{PCO_2}$

Renal Compensation to Respiratory and/or non-Renal Alkalosis

Metabolic Acidosis \rightarrow Respiratory Compensation

Severe diarrhea/Kidney disease -HCO3⁻ \rightarrow Decreased ratio \rightarrow Decreased pH

 $pH \propto \frac{HCO3^{-}}{PCO_2}$

- Respiratory Compensation is increased ventilation
- Reduces P_{CO2} to normalize ratio

Metabolic Alkalosis \rightarrow Respiratory Compensation

Increased extracellular [HCO3⁻] \rightarrow increased ([HCO₃⁻] / P_{cO2}) ratio

End Respiratory Physiology Lecture 41