KPCOM Respiratory System Lecture 1 03/28/2025 0810-0900 Mechanical Aspects of Obstructive and Restrictive Diseases

HN Mayrovitz PhD mayrovit@nova.edu drmayrovitz.com

Normal Complete Flow-Volume Loop

- As lung expands from RV the inward lung recoil increases so P_{REC} increases
- Chest wall outward recoil force decreases as thoracic volume gets closer to 0 stress
- These two forces work against increasing IFR
- But, as lung expands, AWR falls and favors air inflow
- PIFR is achieved due to these oppositely directed factors

PIFR Determinants

Obstructive vs. **Restrictive Lung Disease**

Basic Features

Obstructive = Abnormal Increase in ??? Airway Resistance (R)

Restrictive = Abnormal Decrease in ??? Respiratory Compliance (C) → More difficult to expand → Greater recoil force

Could (and do) have combinations – Mixed Disease

Obstructive Lung Disease

Key Features of Main Obstructive Lung Diseases

Chronic Obstructive Pulmonary Disease

Chronic Bronchitis

- **Bronchial** Inflammation
- Mucus
- Cough

- Alveolar-capillary wall destruction
- Loss of alveoli
- Increased air spaces
- More compliant but less alveolar recoil ASM enhanced contraction

- Airway collapse due to traction loss
- More difficult to expel air ٠
- Mucus secretion

Asthma

- 1. Airway smooth muscle (ASM) contraction in response to neuro and inflammatory mediators
- 2. Airway wall thickening by hyperplasia or hypertrophy, edema and cellular infiltration
- 3. Airway obstruction by mucus, secretions and cellular debris

Obstructive Overview: COPD vs. Asthma

- Both considered due to chronic respiratory tract inflammation
- Both associated with increased airway resistance
- Asthma \rightarrow Variable airflow limitation that is **usually reversible**
- COPD → Persistent airflow limitation **usually irreversible**

Parameter	Asthma	COPD	
Symptoms	 Wheeze Cough Short of breath Variable – not usually progressive 	 Short of breath Cough Mucus Persistent-Progressive 	
Onset	Usually Young	Usually > 40 years	
Course	Variable – not usually progressive	Progressive	
Bronchodilator response	Usually Good	Usually Good	
Steroids Response	Usually Good	Usually Poor	
Main Features	 Bronchoconstriction Mast cell activation Hyperresponsive ASM Edema Mucus Plugging 	 Emphysema Mucus exudate Small airway fibrosis Edema Distal airway enlargement and destruction 	
Main Airways Generations	 Larger ≥ 2 mm (0-7) conducting zone 	 Smaller < 2 mm Mostly respiratory zone 	

Asthma: Increased Airway Resistance

Asthma: Increased Airway Resistance

Asthma: Increased Airway Resistance

Obstructive Lung Disease: Flow-Volume Changes

Emphysema vs. Normal

Advanced Emphysema

Normal Lung

White specs are blood vessels: low in Emphysema

Restrictive Lung Disease

Restrictive Diseases: *Restricts Lung Expansion*

Factors → "PAINT"

SITE → CAUSES

Pleural \rightarrow Scarring or Effusion or fibrosis etc

Alveolar → Edema or Hemorrhage

Interstitial -> Interstitial Lung Disease or Fibrosis

Neuromuscular \rightarrow ALS or Myopathy

Thoracic/Extra-thoracic \rightarrow **Obesity or Ascites**

Example Conditions

Interstitial Fibrosis

 Interstitial Fibrosis
 + alveolar fibrous tissue
 Lung becomes stiffer
 (-) compliance
 Inspiration more difficult

- <u>Allergic Alveolitis</u> Alvoli Wall Thickens (-) compliance
- <u>Pleural Effusion</u> Intrapleural Fluid buildup: (-) compliance Pleural fibrosis & + rigidity: (-) compliance

Obstructive vs. Restrictive Compliance Abnormalities

Differential Effects on Lung Dynamic Work

Differential Forced Expiratory Flow-Volume Patterns

12

Forced Expiratory Volume-Time Test

Factors and Reference Ranges To be considered for "Normal"

- Gender → Male > Female
- Age → Younger > Older
- Height → Taller > Shorter

	Mild	Moderate	Severe	Very Severe
FEV ₁	≥ 80%	50% to <80%	30% to <50%	<30%
(% predicted)	Stages of COPD (All have (FEV1/FVC) < 0.7			

Differential Forced Expiratory Volume-Time Test Normal-Obstructive-Restrictive

http://www.cdc.gov/niosh/topics/spirometry/RefCalculator.html

Total Work (O₂ Cost) is Minimum at some TV x RR

Hyperinflation: Quick Summary

Static Hyperinflation (At rest)

Recoil pressure reduced \rightarrow + End Expiratory Lung Volume (EELV)

Chronic Obstructive Pulmonary Disease (COPD) especially moderate to severe EMPHYSEMA → Loss of elastic tissue → - recoil pressure *Generally, increase in Total Lung Capacity (TLC)*

Dynamic Hyperinflation (*Exercise***)**

Start inhalation before full exhalation completed

Potentially all levels of COPD including ASTHMA

- → Temporary and Variable in extent
- → Can occur with no increase in TLC

Main Factors Determining Extent:

- 1) Degree of airflow limitation
- **2)** time available for exhalation (Δ T)

Dynamic Hyperinflation – "Air Trapping"

Can occur with any increase in airway R (Airflow Limitation)

- To prevent "air trapping" need to exhale the volume (ΔV) that was just inhaled (TV)
- Volume actually removed (δV) depends on the air flow Q and the time (ΔT) as $\delta V = Q \times \Delta T$

prior to expiration to true FRC then air trapping!

Hyperinflation

Normal 2 Diaphragm

Flattening of the diaphragm

Chronic Obstructive Pulmonary Disease (COPD) Especially moderate to severe EMPHYSEMA

- Loss of elastic tissue
- Reduced recoil pressure
- Increased end expiratory lung volume
- Increase Total Lung Capacity (TLC)

Dynamic Hyperinflation – Effects Summary

- May occur at rest but often manifest if increased ventilation demand
- Increased respiratory rate (RR) further shortens available exp time
- Further air trapping results and TV begins to be limited by now diminishing inspiratory capacity (IC) due to rising FRC
- Inspiratory muscle load increases \rightarrow greater recoil at elevated volume
- Increased work of inspiration and oxygen cost of breathing
- Increasing amounts of dyspnea

10 Short Interactive Review Questions

- 1. If lung compliance decreases, what is the effect on the work of inspiration?
- 2. If surfactant production is low or absent, what will be the effect on work of inspiration?
- 3. What is the name given to lung volume at the end of quiet expiration?
- 4. As you inspire does intrapleural pressure increase or decrease?
- 5. As you inspire does translung pressure increase or decrease?
- 6. Is total respiratory compliance greater on less than lung compliance?
- 7. What are the components of airway-alveolar time constant?
- 8. During a normal respiration cycle, when is the air flow zero?
- 9. A person with emphysema would have a high or low lung recoil pressure?
- 10. A person with interstitial fibrosis would have a high or low lung recoil pressure?

End Respiration Physiology Lecture 1