KPCOM Respiratory System Lecture 2 03/28/2025 0910-1000 Lung Blood Perfusion

HN Mayrovitz PhD mayrovit@nova.edu drmayrovitz.com

Determining Pulmonary Blood Flow = CO

Determining CO via Thermodilution Method

Swan-Ganz catheter with thermistor placed into pulmonary artery via peripheral vein insertion

 Cold saline injected into right atrium at _
 end of expiration

- (-)

Pulmonary Pressure and Flow Features

Pulmonary and Systemic Vascular Resistances

Clinical Correlations

Clinical Correlation: Pulmonary Embolism

- Inject radiolabeled albumin (99mTc-labeled macroaggregated albumin)
- Detect distribution of radiation (Gamma-camera)

Clinical Correlation: Pulmonary Artery Hypertension

Blood Flow Determinants

Lung Volume Affects Vascular Resistance Opposite effects on intra and extra alveolar vessels

Dr. HN Mayrovitz

TLC 13 of 20

Summary: Blood Flow Varies with Lung Volume

Gravity Affects Vascular Resistance

Gravity: 3-Zone Dependent Lung Model

Thin-walled vessels can collapse

- If surround pressure (P_A) > P_a then Q =0 (Zone 1)
- Not normally occurring but may occur with
 - → low ABP e.g. Hemorrhage
 - → positive pressure ventilation
- If collapsible state (Zone 2) Q ~ P_a P_A
 - → Could be intermittent pulses of flow
- If non-collapsible state (Zone 3) Q ~ P_a P_v

Hypoxic Pulmonary Vasoconstriction

Intravascular Pressure Affects Vascular Resistance

Increased Intravascular Pressure

Decreased Resistance

- Vessels Widen
- Capillary Recruitment
- Capillary Distention

Factors Contributing to Blood Flow Reductions

- Local Hypoxia (HPV)----- Constriction in hypoxic regions Effect: Shifts flow to regions with higher alveolar PA₀₂
- Systemic Hypoxia ----- General pulmonary constriction Effect: Increased RV and PA pressures - Pulmonary HTN
- LA pressure increase ---- Reflex pulmonary constriction Effect: Protects against pulmonary edema but HTN

Intravascular Obstructions: thrombi, emboli, parasites etc.

- Obliterative or Obstructive Lung Diseases
 Emphysema ---- tissue loss with loss of capillaries
 Interstitial Fibrosis ---- vascular tissue replaced by fibrosis
- Pulmonary hypotension ---- vessel critical closure ALSO
 External Compression

Interactive Short Answer Questions

- 1. As you are taking a deep breath what happens to your pulmonary vascular resistance?
- 2. As you go from a standing to a supine position what happens to the lung base vascular resistance?
- 3. In which lung zone is the likelihood of alveolar dead space most likely?
- 4. What is the approximate normal value for the average pulmonary artery pressure?
- 5. What is the approximate threshold for pulmonary artery hypertension?
- 6. Increasing transmural pressure in the pulmonary artery does what to vascular resistance?
- 7. In what way does emphysema contribute to decreased pulmonary blood flow?
- 8. What is hypoxic pulmonary vasoconstriction?
- 9. Which segment of the pulmonary vascular tree normally has the least vascular resistance?
- 10. During inspiration starting at FRC what happens to vascular resistance of alveolar capillaries?

End Respiration Physiology Lecture 2