# KPCOM Respiratory System Lecture 03/28/2025 1010-1100 Ventilation – Perfusion Matching



HN Mayrovitz PhD mayrovit@nova.edu drmayrovitz.com

#### **Ventilation Related Processes: REVIEW**



## **Review of Complete Alveolar Gas Equation**

$$PA_{O2} = (P_{ATM} - 47) \times F_{IO2} - PA_{CO2} [F_{IO2} + (1-F_{IO2})/R]$$

$$PO_{2} \text{ (trachea)} \qquad \text{Alveolar CO}_{2} \qquad \text{"Correction" factor}$$

Calculation at sea level with room air

R = respiratory exchange ratio=  $CO_2$  produced/ $O_2$  consumed

$$PA_{O2} = (760-47) \times .21 - 40 [.21 + (1-.21)/.8]$$

$$PA_{02} = (713) \times .21 - 40 [1.2]$$

$$PA_{02} \approx 150 - 40 [1.2] = 102 \text{ torr}$$

 $PA_{O2} \approx 150 - 1.2 PA_{CO2}$  for room air at sea level

Approximate Equation B&L 23.13

$$PA_{O2} = (P_{ATM} - 47) \times F_{IO2} - PA_{CO2}/R$$

$$PO_{2} \text{ (trachea)}$$

$$PA_{02} \approx 150 - 40/0.8 = 100 \text{ torr}$$

## **Review of the Alveolar Ventilation Equation**

$$PA_{CO2} = K \frac{CO_2 \text{ Production}}{\text{Alveolar Ventilation}} = K \frac{V_{CO_2}}{Q_A}$$

K = 0.863 (mmHg) with V'CO<sub>2</sub> in ml/min and Q<sub>A</sub> in L/minute

 $K = 863 \text{ (mmHg) with V'CO}_2 \text{ in ml/min and } Q_A \text{ in ml/minute}$ 

- Hypoventilation if ratio too high: PA<sub>CO2</sub> rises
- Hyperventilation if ratio is too low: PA<sub>CO2</sub> falls

If as usual,  $P_{ATM}$  = 760 mmHg and  $Q_A$  measured at 310°K (37°C) and  $V'_{CO2}$  measured at 273° STP Then K = 760 mmHg x (310K/273K) = 760 x 1.1355 = 863 as shown above Berne and Levy equation 23.16 not quite correct!

## **Ventilation-Perfusion Matching**

## **Basic Concept**

It is neither ventilation nor perfusion alone that determines arterial blood gases. It is the ratio of ventilation to perfusion that is the determinant!

**Ventilation/Perfusion = V'/Q ratio** 

## **Case A: Ventilation-Perfusion Concept**

- Assume that 5 mlO<sub>2</sub> /100 ml blood are used by the body per minute
- At a CO of 5000 ml/min each of the 50 100 ml "train cars" needs 5 mlO<sub>2</sub>
- Assume that an alveolar ventilation of 4.2 L/min just supplies this amt of O<sub>2</sub>
- This results in a proper "arterialization" of blood exiting the lung.
- Ventilation is MATCHED to the Perfusion arterialize blood exiting lung



Blood flow is just right for the rate of O<sub>2</sub> delivery!

## **Case B: Ventilation-Perfusion Concept**

Now assume that an alveolar ventilation remains unchanged at 4.2 L/min BUT that blood flow increases to 10 L/min

- Now, 100 "100 ml units" pass by each min So each dl picks up only 2.5 ml of O<sub>2</sub>
- Since this is ½ that needed, blood exiting the lung will have its PO<sub>2</sub> much reduced!



## **Case C: Ventilation-Perfusion Concept**

Now suppose ventilation and perfusion become 1/2 of what they originally were



## Another View of V'/Q Mismatching



- If all lung units were V'/Q matched, then optimum lung function; but this is not the case
- Some units have V'/Q less than a match and other have V'/Q greater than a match
- The combined blood coming from all units determines the arterial values of O<sub>2</sub> and CO<sub>2</sub>
- As the number of low V'/Q lung units increases the blood exiting the lung will have increasing values of CO<sub>2</sub> and decreasing values of O<sub>2</sub>

## **Effects of Changes in V'/Q**



## Regional V'/Q Variations



#### Clinical Correlation: Ventilation matched to Perfusion



## **Clinical Correlation: Pulmonary Embolism**



## **Clinical Correlation: Hyperventilation**



## **Review of Dead Space Definitions and Calculations**

- Anatomic (Airway) Dead Space = No gas exchange → Dead Space
- Alveolar Dead Space = Sum of alveolar volumes that receive little or no blood flow Ventilated but low or no perfusion (V'/Q → infinity)
   Example is Zone I if low pulmonary artery pressure)
- Physiological Dead Space = Amount of each tidal volume that does NOT participate in gas exchange
- Physiological Dead Space = PDS = Anatomic DS + Alveolar DS

**Collecting Expired Volume in a Bag** 

$$PDS = TV \times (1 - P_ECO_2/P_aCO_2)$$

 $P_aCO_2 = CO_2$  tension in arterial blood  $P_FCO_2 = CO_2$  tension in expired air

- If ratio = 1 → no dead space
- If ratio = 0 → all dead space
- The lower the CO<sub>2</sub> tension in the expired air the greater is the physiological dead space!

## Review of Sources of Uneven Ventilation in the Lung

#### Variable Resistance Distribution Within the Lung

- Uneven Regional obstruction  $\rightarrow$  e.g. **Bronchoconstriction** in Asthma
- Uneven Airway collapse → e.g. as in Emphysema
- Uneven Airway narrowing → e.g. as in Bronchitis
- Uneven Airway compression → e.g. as in Tumors or Edema
- Uneven lung and airway expansion → e.g. due to Gravity

#### Variable Compliance Distribution within the Lung

- Uneven Fibrosis distribution → e.g. as in interstitial fibrotic disease
- Uneven loss of elastic recoil → e.g. as in emphysema
- Uneven surfactant distribution → e.g. due to structural issues
- Uneven pleural thickness
- Uneven areas of edema

## Oxygen Deficiency –Terms and Definitions

```
ANOXIA = No O<sub>2</sub>

HYPOXEMIA = Hypoxic Hypoxia

= Low arterial blood PO<sub>2</sub>
```

**HYPOXIA** = Inadequate O<sub>2</sub> Available for Tissue Needs *Hematological Hypoxia* 

Low Hb to bind/carry O<sub>2</sub> but normal PO<sub>2</sub> e.g. Anemia or Carbon Monoxide Poisoning

Ischemic Hypoxia

Low tissue O<sub>2</sub> due to low flow (blood PO<sub>2</sub> is normal)

Histotoxic Hypoxia

Normal O<sub>2</sub> supplied but can't be utilized by tissue; e.g. Cyanide Poisoning

## **Interactive Questions**

- 1. According to the Alveolar **Ventilation** Equation, if alveolar ventilation decreases in relation to CO<sub>2</sub> removal, what happens to alveolar CO<sub>2</sub> tension?

  PAGO2 = K
- 2. According to the Alveolar **Gas** Equation, if alveolar  $CO_2$  tension increases, what happens to alveolar oxygen tension?  $PA_{O2} = (P_{ATM} 47) \times F_{IO2} PA_{CO2}/R$
- 3) If alveolar ventilation increases above normal the
- a) alveolar PO2 decreases
- b) alveolar PCO2 decreases <-
- c) arterial PO2 decreases
- d) arterial PCO2 increases
- 4) If barometric pressure is 1000 torr, PO2 in your trachea is closest to which of the

following?

- a) 40 torr
- b) 100 torr
- c) 150 torr <--
- d) 200 torr

## **Interactive Questions**

- 5) Reduced alveolar ventilation will tend to
- a) increase arterial PCO2
- b) decrease alveolar PCO2
- c) increase arteriolar PO2
- d) increase alveolar PO2
- 6) If alveolar ventilation is constant, a large increase in pulmonary blood flow will tend to
- a) increase the oxygen saturation of arterial blood
- b) increase the oxygen tension in arterial blood
- c) increase the arterial CO2 tension
- d) have no effect on arterial CO2 tension



- 7) With no change in blood flow, a large decrease in alveolar ventilation will tend to
- a) cause alveolar oxygen to rise
- b) cause alveolar carbon dioxide to fall
- c) produce respiratory acidosis
- d) produce respiratory alkalosis
- 8) Which tends to cause arterial hypoxemia?
- a) increased ventilation/perfusion ratio
- b) decreased barometric pressure
- c) decreased arterial PCO2
- d) increased lung diffusion capacity

9. Which one of the following is higher at the apex of the lung than at the base when a person is standing?

- A) V/Q ratio
- B) Blood flow
- C) Ventilation
- D) PACO2
- E) Lung compliance



Dr. HN Mayrovitz

19 of 19

## End Respiration Physiology Lecture 3