KPCOM Respiratory System Lecture 5 03/28/2025 1310-1400 Control of Respiration

HN Mayrovitz PhD mayrovit@nova.edu drmayrovitz.com

Respiratory Cell Groups

Respiratory Center Actions: Summary

Impulses to Respiratory Muscles From Medullary Central Pattern Generator (CPG) Cause Inspiration

Overview of Ventilation Control with Feedback

Chemical Control

Chemical Control Mediated via

Peripheral Chemoreceptors

- Carotid Bodies
- Aortic Bodies

Central Chemoreceptors

Peripheral Chemoreceptor (PCR): Pathways

Carotid Body Function: Overview

NTS and DRG: Nucleus Tractus Solitarius Dorsal Respiratory Group

- Carotid body: very high blood flow/g
- Advantage to sample blood chemistry
- Glomus cells in carotid body monitors blood PO₂, PCO₂ and pH
- For indicated directional changes, afferent nerve traffic to the respiratory center is increased
- Results is increased efferent nerve traffic from dorsal respiratory cell groups (DRG) causing increased respiration rate and tidal volume
- Certain activities may be modulated
 by sympathetic nerve vascular control of arterioles feeding the glomus cells

Carotid Body Partial Mechanism

Peripheral Chemoreceptors (PCR): Summary

- Located bilaterally in carotid and aortic bodies
- Respond to Hypoxia, Hypercapnia and Acidosis
- Afferent pathways for:
 - Carotid body → Hering's nerve

Aortic body → vagus nerve

- Large afferent impulse traffic at normal blood gases
- Increased afferent activity caused by
- (1) decreased arterial Pao2
- (2) increased Pacoz
- (3) decreased arterial pH
- Feedback to respiratory center \rightarrow increased V'
- Response to hypoxemia depends on Pa_{co2} & pH

More Pa_{co2} or lower pH \rightarrow greater $\Delta V'$ for same ΔPa_{o2}

Dr. HN Mayrovitz

10 of 20

Central Chemoreceptor Function Overview

Central Chemoreceptor Function Overview

Central Chemoreceptor Function Overview

Central Chemoreceptors: Summary

- CCR in brain parenchyma bathed in brain extracellular fluid/CSF
- If blood gases and pH near normal CCR are main control of ventilation
- CCR are sensitive to arterial hypercapnia (and associated fall in pH)
- CCR actually sense pH (H⁺) around receptor neurons bathed in CSF
- pH changes may occur due to:
 - 1) increased cerebral blood CO₂ diffusing across the blood brain
 - barrier resulting in a rapid (60 sec) decrease in the pH of CSF
 - 2) decreased pH of brain or CSF not due to changes in Pa_{co2} (delayed)
- CCR do not respond to hypoxia
- CCR and PCR both affect ventilation response to increased CO₂ levels

Overall Respiratory Control Summary

Dr. HN Mayrovitz 15 of 20

Respiratory Mechanoreceptors

Receptors Located in

- Upper respiratory
- Tracheo-bronchial tree
- Lung parenchyma

Broadly three types

- Slowly Adapting (SAR) Among ASM cells
- Rapidly Adapting (RAR)
 Among airway epithelial cells
- C-fiber endings (J-receptors) near blood vessels/capillaries

Vagal Afferents

- Connect to respiratory cntr
- Initiate many reflexes

C-Fiber Receptors (Juxtacapillary or J Receptors)

- Network of small unmyelinated axons (C-fibers) innervate receptors in alveoli near or in the walls of pulmonary capillaries
- Sensitive to distension and/or distortion caused by increases in capillary or interstitial volume
- Increased distention leads to increased ventilation (*pulmonary congestion* by LV failure)
- Decreased distention leads to decreased ventilation (e.g. pulmonary *embolism* that obstructs flow proximal to capillaries)

Hering-Breuer INFLATION Reflex

Hering-Breuer DEFLATION Reflex

End Respiratory Physiology Lecture 5

Dr. HN Mayrovitz