Lecture 3 Introduction to Electrocardiography

HN Mayrovitz PhD mayrovit@nova.edu drmayrovitz.com

Topics

- Action potential EKG relationship overview
- Moving electrical dipoles as a source of EKG signals
- EKG waves and intervals in relation to action potentials
- Measuring the EKG leads and axes introduction
- EKG waves in relation to myocardial territories
- Conduction blocks
- Mean electrical axis (MEA) and axis deviations
- Vector projections to determine MEA
- EKG basic patterns
 - Normal
 - Ectopic impulses Atrial and Ventricular
 - Tachycardias
 - Flutter wave
 - Atrial fibrillation
 - Ventricular fibrillation

Action potential conduction as EKG source

Moving waves of Changing Electrical Activity

Moving Dipole \rightarrow Voltage Change at a Distance

Moving Dipole \rightarrow Voltage Change at a Distance

Moving Dipole \rightarrow Voltage Change at a Distance

EKG Components and Relationship to AP

Measuring the EKG

Normal 12-lead EKG

MA Lead I A

Time Standard Calibration Speed = 25 mm/sec 1 mm = 0.04 sec = 1 ss 5 ss = 0.20 sec Amplitude Calibration 10 ss = 1 mv

Chest (Precordial) Leads: EKG Deflections

Chest and Limb Leads: Sensed Territories

Dr HN Mayrovitz

Conduction Blocks: 1º

Lengthened PR Interval

Normal PR: 0.12 – 0.2 s

AVN

Conduction Blocks: 2º

Conduction Blocks: 2°

Leads and Axes

Frontal Plane Leads and Axes

QRS Vector = Mean Electrical Axis (MEA)

Vector addition determines MEA

Axis Deviations

Dr HN Mayrovitz

Conduction Blocks as Source of Axis Deviation

EKG Vector Projection

Cardiac Vector Projection

Cardiac Vector Projection Example

Cardiac Vector Projection Example Turned Around

.

Normal 12-Lead EKG – *Determine MEA*

EKG Patterns Normal and Not-So-Normal (as time permits)

Normal

Atrial Ectopic Impulse – Early

Ectopic Impulse – Negative P-Wave

Ectopic Impulse – Ventricular

Dr HN Mayrovitz

Supraventricular Paroxysmal Tachycardia

Ventricular Tachycardia

Flutter Waves

Atrial Fibrillation

MULTIPLE Ectopic Foci causing uncoordinated impulse transmission through AVN

Atrial Fibrillation (aFib) → Rhythm is <u>irregularly irregular</u>

Ventricular Fibrillation

R on T: Ventricular Fibrillation

Dr HN Mayrovitz

End CV Physiology Lecture 3

Dr HN Mayrovitz