Lecture 13 Peripheral Vascular Control

HN Mayrovitz PhD mayrovit@nova.edu drmayrovitz.com

Topics

"Part 1"

- Receptor Review for Vasodilation and Vasoconstriction
- Important Role of Calcium
- Important Role of Potassium
- Endothelial-Vascular Smooth Muscle Interaction
- Endothelial Vasoactive Substances \rightarrow NO and Endothelin

"Part 2" \rightarrow Local Controls

- Myogenic Response
- Autoregulation
- Metabolic Control
- Reactive Hyperemia

"Part 3" → Selected circulations

- Muscle
- Skin
- Cerebral
- Splanchnic

Vascular Control: Neural-Humoral-Local

ANP=Atrial Natriuretic Protein

VSM Ion Mechanisms: Overview

VSM tone and contractile state depends on Ion movements through

- Voltage Operated Channels (VOC)
- Receptor Operated Channels (ROC)

VOC → Voltage- Gated (Electromechanical Coupling)

- Hyperpolarization \rightarrow Vasodilation
- Depolarization → Vasoconstriction

ROC → Ligand-Gated (Pharmaco-mechanical Coupling)

Ca⁺⁺ is a major player in VSM Contraction with increased contraction dependent on increased availability and less contraction (dilatation) the opposite.

- Ca⁺⁺ entry via ROC's and VOC's
- Ca⁺⁺ release from SR stores
- Ca⁺⁺ removal via SR & membrane "pumps"
- Ca⁺⁺ sensitivity of VSM

Vascular Smooth Muscle: Dominant Role of Ca⁺⁺

*IP*₃=inositol triphosphate *SR*=sarcoplasmic reticulum Dr HN Mayrovitz

Potassium Ion Channels in Vascular Smooth Muscle

- Hyperpolarization reduces open-state probability of voltage-gated Ca⁺⁺ channels
- As a result, inward I_{Ca} decreases causing [Ca⁺⁺] to decrease
- Result is vasodilation directly or counteracting depolarization-induced vasoconstriction

Summary of Some Major CV-Related Receptors

Local Control Processes

- Myogenic Response
- Autoregulation
- Metabolic → Active or Functional Hyperemia
- Reactive Hyperemia

Myogenic Response: Defined

- Active vascular smooth muscle change in response to a change in transmural pressure (TMP)
- Direction of active change opposes stretch caused by the initiating pressure change

Myogenic Response: Illustrated

Autoregulation of Blood Flow: Defined

- Tendency to maintain blood flow despite changes in perfusion pressure
- Change is produced by increases or decreases in vascular resistance of the organ
- If perfusion pressure decreases so does resistance
- If perfusion pressure increases so does resistance

Autoregulation of Blood Flow: Illustrated

Autoregulation of Blood Flow: Reviewed

Dr HN Mayrovitz

Metabolic Control: Defined

- Local blood flow change to match metabolic demand
- Referred to as Active or Functional Hyperemia
- Increased metabolic demand → increased flow
- Decreased metabolic demand → decreased flow

Metabolic Control: Illustrated

Local Hypoxia

- Adenosine
- Local Acidosis
- •CO₂
- Histamine
- Bradykinin
- Prostaglandins

Coronary Blood Flow (ml/min/100g)

Functional and Autoregulation Combined

Reactive Hyperemia: Defined

- Excess blood flow increase in response to prior deprivation
- Prior blood flow deficit usually transient then restored

Examples include

- \rightarrow Clearing of a clot or embolus
- \rightarrow Opening a blocked artery
- \rightarrow Release of a clamp in surgery

Reactive Hyperemia: Illustrated

Skeletal Muscle Control Neurogenic Metabolic

Skeletal Muscle

Skin Overall Control

Cerebral Circulation

Main Function

Maintain O₂ and glucose) to hypoxia-intolerant grey matter

Main Features

- Circle of Willis Anatomical guard against ischemia
- High capillary density Small O₂ diffusion distance
- Blood brain barrier Stable neuronal environment
- High Basal Blood Flow ~ 50 ml/min/100g
- Brain can control own flow by changing BP
- Highly developed blood flow autoregulation

Metabolic control with physiological vasodilators

- Increased CO₂
- Decreased O₂ (P_{O2} < 50 mmHg)
- Increased K⁺ or H⁺
- Adenosine due to low O₂

(Ischemia – Hypoxemia – Hypotension)

Splanchnic Circulation

Blood flow through

- •Liver
- •Spleen
- Stomach
- Pancreas
- •Large Intestines
- Small Intestines

Highly Interconnected Vascular Supply

In each gut region

- Blood Flow ~ Metabolic Activity in that region ~ Digestive and Absorptive Activities in region
- Blood Flow increases sequentially from stomach to more distal segments in accordance with activity

End CV Physiology Lecture 13

Dr HN Mayrovitz