## Lecture 15 Cardio-Vascular Interactions



HN Mayrovitz PhD mayrovit@nova.edu drmayrovitz.com

#### **Dependence of Venous Return on RAP**



Dr HN Mayrovitz

#### "Pressure Gradient for Venous Return" (PGVR)



# **The Cardiovascular Representation**

#### **Cardiac Output Major Determinants**

#### **Cardiac Dependent**



#### **Basic Circulatory Representation**



#### **Vascular Function Curve – Heart Stopped**



#### **Restart Heart – Start Pumping**



#### **Vascular Function Curve (VFC) – Heart Pumping**



### Vascular Function Curve (VFC): Slope Change



#### **Vascular and Cardiac Function Curves Intersect**



### **Mean Circulatory Pressure Changes**



### **Vascular Function: Slope Changes**



### **Contractility Effects**



### Shifts in VFC



#### **Decreased Contractility**



The figure shows a hypothetical patient's cardiac and vascular function curves before a change (control dashed line) and the change that occurred due to some event (solid lines). CO and CVP are cardiac output and central venous pressure respectively.

- A. Contractility and TPR increased
- B. Contractility and TPR decreased
- C. Contractility and blood volume increased
- D. TPR and blood volume increased
- E. TPR increased and contractility decreased





The figure shows a hypothetical patient's cardiac and vascular function curves before a change (control dashed line) and the change that occurred due to some event (solid lines). CO and CVP are cardiac output and central venous pressure respectively. CO L/mir What best describes the change that occurred?

- A. Contractility and TPR increased
- B. Contractility and TPR decreased
- C. Contractility and blood volume increased
- D. TPR and blood volume increased
- E. TPR increased and contractility decreased





The figure shows a hypothetical patient's cardiac and vascular function curves before a change (control dashed line) and the change that occurred due to some event (solid lines). CO and CVP are cardiac output and central venous pressure respectively. What best describes the change that occurred?

If the intervening event is **increased sympathetic activation of heart and arterioles**, what is the new operating point?

- A. 2
- B. 3
- C. 4
- D. 5
- E. 6



The figure shows a hypothetical patient's cardiac and vascular function curves before a change (control dashed line) and the change that occurred due to some event (solid lines). CO and CVP are cardiac output and central venous pressure respectively. What best describes the change that occurred?

If the intervening event is **increased sympathetic activation of heart and veins**, what is the new operating point?

- A. 1
- B. 3
- C. 4
- D. 5
- E. 6



The figure shows a hypothetical patient's cardiac and vascular function curves before a change (control dashed line) and the change that occurred due to some event (solid lines). CO and CVP are cardiac output and central venous pressure respectively. What best describes the change that occurred?

If the intervening event is **administration of a vascular dilator and a positive inotropic drug**, what is the new operating point?

- A. 1
- B. 3
- C. 4
- D. 5
- E. 6







What is new intersection if sympathetic impulses increase only to arterioles? (neglect effect on arterial compliance)









# **End CV Physiology Lecture 15**

Dr HN Mayrovitz