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INTRODUCTION

A microvascular hemodynamic impact of circulating leukocytes (mainly pol-
ymorphonuclear granulocytes, PMN) due in part to plugging and adherence within
microvessels is strongly suggested by recent findings (Bagge et al., 1980; Engler
et al., 1983; Braide et al., 1984; Mayrovitz et al., 1984). The extent of the
leukocyte effect in a given vessel depends on factors such as the size, mechanical
properties, and state of activation of the PMN and the vessel, as well as the
prevailing local hemodynamics. For any set of fixed conditions the size of the
leukocyte in relation to the vessel lumen likely affects the extent and frequency
of plugging, blood flow velocity (Mayrovitz, 1982), the initiation of PMN adherence
to vascular endothelium (Schmid-Schénbein et al., 1975), and the distribution of
leukocytes at branch points (Mayrovitz and Rubin, 1984). In spite of the significance
of the size of the circulating PMN, little systematic work in characterizing this
parameter has evolved. The work herein described summarizes our measurements
of the in vivo size of circulating PMN as observed in the cremaster microvasculature
of the widely studied spontaneously hypertensive rat (SHR).

MATERIALS AND METHODS

Male SHR (N = 6, age = 6-8 weeks, wt = 85-110 g) of the Okamotto and
Oaki strain (1963) were used in this study. Each animal was initially anesthetized
with a single dose of Nembutal (5.0 mg/100 g ip), placed on a heated mat, and
had the trachea cannulated. The cremaster muscle was prepared for microscopic
observation using the Baez method (1973) with slight modifications (Mayrovitz
and Roy, 1983). After this preparation, the animal, already secured to a mounting
board, was placed on the stage of a Leitz Laborlux 12 HL trinocular microscope
equipped with a 150 W Xenon light source for transillumination. After a 1-hr
stabilization period the microvascular field was observed (50 x, 1.0 numerical
aperture water immersion objective and 16X oculars) to locate postcapillary
venules in which leukocytes could be seen rolling along the endothelium. The
postcapillary sites were selected for leukocyte size measurements because the
cells are most clearly visualized in these vessels. This is because they tend to
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marginate toward the wall and they move slowly. This is not generally the case,
for example, in arteriolar vessels.

The images of these rolling cells were recorded using a closed-circuit TV system
consisting of a Newvicon camera (MTI-model VC-65) equipped with a 2 x elec-
tronically controlled magnifier, a video tape recorder (JVC, Model 6060U) and
a 19-inch TV monitor (RCA Model TC1119). The TV camera affixed to the
trinocular port of the microscope, was rotated to produce a recorded vessel
image that was horizontal as viewed on the monitor. When observed, leukocytes
located in the tissue at various distances from vessels were also recorded. All
measurements of leukocyte size were done off-line by processing the recorded
images using frame-by-frame analysis. This process was done by first calibrating
the coordinates of the video image on the monitor using manually controlled and
electronically generated video cross-hairs from a video analyzer (Colorado Video
Inc, Model 321). The intersection of the horizontal and vertical cross hairs define
a unique voltage characterizing each x—y coordinate. Calibration of the region
of the image field used for analysis was established using a calibrated stage
micrometer with 10-um line spacing (Leitz, Model M9). Horizontal and verti-
cal calibration factors were determined and thereafter used for the in vivo
measurements.

Cell diameters (Horizontal, D,, and vertical, D)) were determined only for
those cells with the best visual clarity in which the cell borders could be optimally
ascertained. For these cells the diameters were determined at a single instant in
time and there was no attempt to make multiple measurements of individual
flowing cells. For any given video field, the percentage of cells which we considered
to have optimal visual clarity was quite variable but was generally not less than
20% nor more than 70%. The sizes of a total of 300 cells in six animals were
determined. A mean spherical diameter, D.,, was calculated as (D, + D,)/2 and
was used to calculate cell surface area (An) and volume (V,,) assuming a spherical
cell shape with diameter of D,,. In addition, for comparative purposes, the values
of D, and D, were used to directly calculate the surface area (A.) and volume
(V.) of a prolate spheroid having D, and D, as the larger and smaller diameters,
respectively. Assuming that V. was distributed within the volume of a sphere,
the associated equivalent spherical diameter, D, , was then determined and compared
with D_ .

Accuracy of the dimension measuring system was evaluated using a calibrated
standard having opaque and transparent line widths varying from 3.0 to 12.0 pm
with an absolute error guaranteed to be within +0.10 wm (Gold Arc Precision
Linewidth and Calibration Standard No. 1562). Multiple measurements of the
standard indicated we could routinely obtain the stated value within +0.12 um.
Though the system was capable of this accuracy for structures with infinitesimal
depth, the in vivo measurement of cells of the order of 10 um is affected by a
thin interference ring (0.3 to 0.4 um) surrounding the cell. This phenomenon
Causes some ambiguity in the precise location of the cell border. For consistency,
and because the outer ring is better visualized in our preparation, we have elected
_10 present all results based on measurements taken at the outer edge of the
Interference ring. If the center of interference ring were to be a better index of
the cell wall location, then the dimensions we report may be as much as 0.3—
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0.4 um larger than actual. However, the choice of which criteria is r ore accurate—
ring edge or center, is not certain.

RESULTS

In Table 1 the mean and standard deviation obtained for the 300 intravascular
cells studied is presented. As revealed by the entries in the first ‘wo columns a
small (0.47 um), but significant (P < 0.001, paired ¢ test) differcnces between
D, and D, was found. The calculated values of surface area and volume depended
very little on whether a spherical or spheroidal shape was used. ""he equivalent
spherical diameter, D,, obtained from the spheroidal volume cilculation was
only 0.1 wm less than the mean spherical diameter, D, , obtained from the average
of D, and D,. The mean spherical diameter distribution of the rolling cells is
presented in Fig. 1 as a histogram with 0.5-um bin sizes. Separate calculations
show that the median value for this distribution is 7.92 um. No stati: tical difference
between this diameter distribution and a normal distribution could be detected
using either a x-square test (P = 0.221), or a Kolmogorov—Smirnov test P =
0.516).

DISCUSSION

Documented reports of in vivo PMN size are quite limited. Cbservations of
cell size made in vivo in humans apparently vary considerably, but a value of
about 9 um is quoted as appropriate for the majority of cells (Bagge ¢nd Branemark,
1977). Extensive measurements of human cells in vitro have shcwn that freely
suspended leukocytes, (e.g., neutrophils) are essentially spherici:l and have di-
ameters (about 7.55 um) that are much less than those obtained using standard
blood smears in which the cells are somewhat squashed (Schmil-Schonbein et
al., 1980b). Measurements based on photographs of rolling and adherent leukocytes
in venules of rabbit omentum indicate a diameter range of 5.0 to 9.5 um for 31
cells (Schmid-Schénbein et al., 1975). From this data a mean czll diameter of
about 7.5 um may be calculated. The present results based on 300 measurements
in six rats indicate a mean spherical diameter of rolling cells of about 8 um with
a small variance from animal to animal. This value is thus similar 1o that obtained
for the rabbit cells obtained under very similar in vivo conditions but somewhat
less than that reported for the in vivo value in humans. In the present case,
however, it was clear that under the conditions of our experiment:; the horizontal

TABLE 1|
GEeOMETRIC DaTa FOR ROLLING LEUKOCYTES

Diameter (um) Area (um)* Volume (um)?

D, D, D D. Anm A V V.
Mean 8.20 * 7.72 7.96 7.86 200 197 268 260
SD 0.63 0.67 0.55 0.57 28 29 57 58

* Horizontal and vertical diameter difference is significant, P < 0.001.
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Fic. 1. Frequency distribution of the mean spherical diameter of rolling leukocytes.

diameter of the rolling cells was slightly, but significantly, greater than the vertical
diameter. We feel that this is due to a slight cell deformation due to the blood
shear in the direction of flow (horizontal). Differences between horizontal and
vertical dimensions were not present in 38 cells which were within the tissue.
For these nonmoving cells a mean diameter of 7.9 um was found which is close
to the mean of the rolling cells. The present resuits confirm the fact that estimations
of leukocyte impact within the living microcirculation must be based on cell
sizes considerably less than quoted by most hematology textbooks.

Though the mean spherical diameter of about 8 um herein detemined is specifically
applicable to the hypertensive rat, we have no reason to believe that the leukocyte
size in this strain is different from other rat strains. Previous work has shown
for example that there is no difference in leukocyte counts or blood viscosity in
SHR as compared with normotensive controls (Mayrovitz et al., 1982). Further,
there is no known link between leukocyte size and hypertension development
which would suggest that cell size in the SHR would be different from cell size
in a genetically similar but normotensive counterpart. Indeed, the fact that the
SHR cell sizes are close to those in different and much larger species including
man, suggests that significant differences across rat strains are not likely. The
main point of the present study was not to compare leukocyte sizes between
various rat strains, but rather to provide basic in vivo cell size information
concerning a widely studied and important experimental model. Given the avail-
ability of this information, it is felt that a more accurate estimation of the possible
hemodynamic interactions of these cells within the microvasculature can evolve.
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