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ABSTRACT 

Breast cancer-related lymphedema (BCRL) presents as swelling in the arm, hand, trunk, or breast at 

varying times after completion of breast cancer treatment. The reported incidence of BCRL varies widely 

in part due to its dependence on the type and extent of the treatment, pre-treatment risk factors, and the 

criteria used to define its presence. Central to this issue are the various quantitative measures that are 

used to specify lymphedema thresholds for its detection and tracking over time and during treatment. 

The goal of this chapter is to discuss these issues and the methods available for the non-invasive 

quantitative assessment of BCRL. Operational principles, advantages and limitations of the various 

methods, their clinical history of use, and effectiveness are discussed. Covered methods include those 
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used to assess and monitor lymphedema-related changes in tissue water at any anatomical site and also 

methods used to assess changes only in limbs.  

 

Keywords: breast cancer; dielectric constant; measuring lymphedema; impedance; limb volume 

 

Running Title: Measuring Breast Cancer Related Lymphedema 

 

INTRODUCTION 

Breast cancer-related lymphedema (BCRL) has a variable reported incidence that depends on the 

objective criteria used and, on the type and extent of a patient’s treatment (1-5). When BCRL occurs, it 

manifests itself as increased fluid anywhere in the at-risk arm (6-8) or thorax (9, 10) or other areas. Most 

portable and readily accessible noninvasive methods that assess its presence and extent are restricted to 

those that measure arm size change or the difference between at-risk arm and contralateral arms. These 

methods include manual (11-13) and automated (8, 14-16) circumference and volume measurements, 

arm fluid changes assessed by electrical impedance (17-19), and volume changes assessed by water 

displacement measurements (WDM). These are discussed after a brief description of BCRL incidence, 

and the factors affecting it. Subsequently, a fully portable measurement method, used to assess localized 

lymphedema at any anatomical site via tissue dielectric constant measurements (20-24) is described.  

Other non-invasive methods, including photographic and scanning methods (25-27),  magnetic resonance 

imaging (28, 29), and ultrasound (30-32)  are also  briefly discussed.  

 

BCRL INCIDENCE     

BCRL presents as swelling in the arm, hand, trunk, or breast after breast cancer  treatment that, among 

other more serious outcomes, causes discomfort, distress, disability and anxiety (33). Factors that 

influence the incidence of BCRL depend on tumor stage, body mass index, axillary lymph node 

dissection (ALND), number of nodes dissected, axillary radiation, surgery type (34), and the diagnostic 

criteria used.  

 

BCRL incidence is about 20% at one year and 40% at ten years post-treatment (35-37). Thus, at least 

one in five female breast cancer survivors will develop BCRL. According to a meta-analysis (36), BCRL 

incidence was 10.3% between 3-6 months post-surgery, 13.8% between 6-12 months, 18.9% between 

12-24 months, 18.6% between 24-60 months, and 15.6% beyond 60 months. BCRL is more prevalent in 

stage III and stage IV breast cancer since more nodes are generally removed  (38, 39). A 15-year 



prospective study found that 24% of early (stage I and II) and 35.3% of advanced (stage III and IV) breast 

cancer patients  were diagnosed with BCRL (39). Increased body mass index is another important risk 

factor for BCRL, with obese patients being almost twice as likely to develop BCRL (36, 38, 40, 41). 

 

When comparing the two main surgical treatment options, mastectomy and lumpectomy, breast cancer  

survivors who had a mastectomy are more likely to get BCRL (38) with incidence reported as 24-49% 

among mastectomy survivors, and 4-28% among lumpectomy survivors (42).  Survivors who had lymph 

node dissection, with or without axillary radiation, had an increased risk for BCRL (38, 39, 43). BCRL 

among  survivors who had both ALND and radiation was 41%, and in those who did not have radiation, 

it was 17% (43). BCRL also occurs following sentinel lymph node biopsy (SLNB) without ALND (36, 

44). BCRL incidence in breast cancer survivors who had only SLNB was 11.5% but was 39.7% in those 

with both SLNB and ALND (44). Increased incidence of BCRL is greater with ALND (36, 45, 46) and 

with more nodes removed. Removing 1-5 nodes was not a significant risk factor for BCRL whereas 

BCRL was 5-times more likely if 6-15 nodes were removed, and 10-times more likely if 16 or more 

nodes were removed (47).  

 

ARM VOLUMES BASED ON MANUAL CIRCUMFERENCE MEASUREMENTS 

The circumference of the non-compressed and relaxed arm is measured with a tape-measure that is 

optimally pulled with a constant tension using a spring-loaded calibrated tape measure at all measured 

sites (Figure 1). Practical measurement issues include the number of circumferential measurements to 

be made, their longitudinal separation, the volume calculation model, and how the volumes or 

circumferences are optimally used to assess initial lymphedema status and its subsequent change due to 

either time or therapy.  

 

Measurement Details and Volume Calculations   

The preceding measurement issues have been investigated in healthy and lymphedematous arms. Casley-

Smith was among the first to systematically study these issues (48). An approach was to calculate 

segment volumes (VS) between two circumferences (c1,2) separated by a distance L using a truncated 

cone model as VS = L/(12p) x [c1
2+c1c2+c2

2). The formula was used in 150 unilateral BCRL patients with 

circumferences measured at mid-hand, narrowest part of the wrist, and at 10 cm intervals starting from 

the middle fingertip. By summing segment volumes, arm volumes of interest were determined. 

Percentage edema volume (%EV) was calculated as the volume difference between affected and 

contralateral arms divided by contralateral arm volume. The %EV determined this way was compared to 



edema volumes determined via water displacement (%EVW), considered as the gold-standard. A high 

correlation between methods was reported (r=0.925) with a regression equation %EV=1.096 

%EVW+0.007. These authors suggested that rather than using a truncated-cone model, a summation-of-

disks model might be better (49).  

 

Measurements in 15 BCRL patients compared segment lengths of 10-cm vs. about 4-cm in which the 4-

cm start was the most distal portion of the wrist and the end at about 45 cm (13). Calculated %EV was 

similar for both, but shorter segments had a statistically greater %EV that was most evident at greater 

arm volumes and had better accuracy. The circumference-volume method was also compared to WDM 

on 14-women with unilateral BCRL using 4-cm segment lengths (12). Small differences in arm volumes 

were reported depending on method, but inter-arm differentials were highly correlated (r = 0.79). A 

subsequent reliability and validity study compared the circumference-volume method with WDM on 66 

women in which 19 had unilateral BCRL (50). Measured arm length was standardized to start at the wrist 

(mid-ulnar styloid) and extend to 65% of the distance from olecranon (elbow) to acromion (shoulder tip).  

Circumferential measurements were made at specified anatomical sites or standardized distances, with 

four segments used to calculate volume and compared to WDM. Results indicated good correlation 

between methods but based on limits of agreement, the methods could not reliably be interchanged since 

calculated volumes were up to 5% greater than WDM values. Based on reliability analyses they 

concluded that the minimal detectible change in volume that could be used as a clinical threshold 

representing a real change due to time or treatment was 150 ml.    

 

LIMB VOLUMES FROM AUTOMATED ARM CIRCUMFERENCE MEASUREMENTS 

Automation of manual circumference measurements emerged with the arrival of a device commercially 

known as the Perometer. Its basic operating principle is illustrated in Figure 2.   

 

Measurement Details and Volume Calculations 

A sliding frame with imbedded infrared (IR) light sources scans the arm and the “shadow” dimensions 

D1 and D2 are detected and used calculate cross-sectional areas as a constant (k) multiplied by D1 and D2. 

Segment volumes are determined similarly to the manual method with segment volumes summed to 

produce the arm volume of interest. This method has the advantage of rapidly estimating cross-sectional 

areas using as low as 0.5 cm segment lengths and an automatic calculation of arm volumes.  

Disadvantages include device set-up, space requirements, patient positioning, service maintenances and 

initial cost as compared manual methods.  



 

Initial evaluations on 17 lymphedematous arms indicated an arm volume 6.8±4.3% greater than manual 

tape-measure values (16). Subsequent tests on 37 lymphedematous arms compared automated volumes 

vs. tape-measure (5-cm intervals) vs. WDM (51). Reproducibility of each method was assessed as 

satisfactory with inter and intra-class correlation coefficients ranging from 0.937 to 0.997. Repeated 

measurements by the same rater (intra-rater variation) yielded volume percentage differences of 

1.5±1.4% for the Perometer, 2.9±2.9% for WDM and 3.2±4.6% for the tape-measure method. Using 

perometry to pre-operatively screen 1028 women with unilateral BCRL emphasized the importance of 

pre-surgical volumes (15). Perometer measurement utility for pre-operative screening and follow-up in 

large volume centers is supported by findings in which large numbers of patients have been evaluated 

(8, 15). Perometer usefulness to assess hand volume was evaluated in 20 patients with hand lymphedema 

and 20 without lymphedema and compared to values determined using WDM (52). It is unclear what 

calculation method was used but an approximate Perometer volume overestimate of about 7.5% was 

reported. Other methods to estimate hand volume not requiring sophisticated systems have been reported 

(53, 54) as well as methods based on bioimpedance spectroscopy (55-57).    

 

BCRL THRESHOLDS BASED ON ARM DIFFERENTIALS OR CHANGES 

Beyond clinical assessments and patient symptoms, various quantitative parameters have been developed 

to help define BCRL presence in its early subclinical stage and later clinical stage. Parameters based on 

arm metrics were the earliest and remain in use now, but other methods such as bioimpedance and tissue 

dielectric constant measurements are now also available as discussed later in this chapter.  

 

Metric thresholds  

Most BCRL cases are unilateral, so it is common to compare at-risk arms to contralateral arms with 

respect to inter-arm differentials. Arm circumferences are measured bilaterally at corresponding 

anatomical sites and inter-arm circumferences, or inter-arm volumes compared. Untreated BCRL 

progresses in volume and grade rapidly at first and slowly thereafter (48). Untreated BCRL, quantified 

as inter-limb volume ratios (VR), increased by 40.6% in the first year, 12.4% from year one to five, and 

4.22% from five to 30 years (58). Problems of BCRL measurements and accurate BCRL incidence 

assessments  were raised by early investigators (59) and parameter values that best reflect BCRL presence 

were studied by comparing three lymphedema thresholds based on arm metric measurements (60).  Arm 

circumferences were tape-measured at 4-cm intervals and also measured by perometry prior to breast 

surgery and at 6 and 12-months post-surgery in 110 breast cancer survivors. Incidence was assessed in 



three ways based on at-risk arms vs. contralateral arms, 2-cm circumference change at any site, and 200 

ml volume change and 10% volume change. These thresholds yielded quite different estimated one-year 

incidence rates of 46%, 24%, and 8%, respectively.  

 

Further study on 236 patients followed for up to 5-years (5) indicated the 2-cm difference predicted a 

94% incidence whereas the 10% volume difference criterion predicted a 45% incidence. More recently, 

1100 women with breast cancer  who had ALND were followed for up to 5-years (8).  BCRL thresholds 

used in this multicenter study were a relative arm volume increase of ≥10% (Perometer determined) and 

an L-Dex value (8, 14) >10 based on bioimpedance spectroscopy (BIS). By 24 months, 22.8% had BCRL 

based on volume but 45.6% had it based on L-Dex. Early detection of relative volume increases between 

5-10% were strong predictors of BCRL occurring by 36 months. Analyses of the primary study data (61) 

indicated a median time to develop BCRL was 11.3 months. For women followed to 5 years (n=156), 

31.9% had BCRL as assessed by volume, whereas 77.2% had BCRL according to the 200 ml threshold. 

 

BCRL ASSESSMENTS BASED ON WATER DISPLACEMENT METHODS 

WDM is considered by many to be the “gold standard” for volume measurements (50, 62, 63). Insertion 

of the arm into a water-filled volumeter causes a water volume equal to the inserted arm volume to be 

displaced and captured as overflow. Although accurate, the method is time-consuming and messy and 

depends on patient mobility to implement and is not routinely used in clinic. However, it can provide 

comparisons against which other methods may be assessed and provide reference values against which 

BCRL thresholds are developed.  Absolute arm volume thresholds are most useful if pre- 

surgery values are not available. 

 

Water Displacement BCRL Thresholds  

Using WDM, arm volumes were measured in 112 women (50.6±18.2 years)  with a BMI of  24.5±3.9 

Kg/m2 (64). Most were right-handed (n=100) with right arm volumes about 3% greater than the left. Such 

handedness differences should be taken into account. Prediction equations extrapolating back to what an 

arm volume would have been prior to BCRL may be applied based on normative values. For right-handed 

women, right arm volume (RAV) in terms of left arm volume (LAV) can be expressed as RAV = 0.979 

LAV+96.66 ml. Contrastingly, for LAV of right-handed women the relationship is LAV = 0.991 RAV–

33.3 ml. In each case, a 95% confidence interval was about 148 ml.  It was suggested that the equations, 

together with upper confidence limits, be used for thresholds.  

 



As an example, consider a right-handed woman with a left arm at-risk who has a measured RAV of 3000 

ml. Her normal (predicted) LAV is 2940 ml to which is added 148 ml resulting in a 2SD threshold of 

3088 ml and an inter-arm ratio of 1.029. Contrastingly, if the right-arm were at-risk with the left arm 

measured at 3000 ml, the predicted threshold is 3182 ml with an inter-arm ratio of 1.06.  

 

Inter-arm differentials of 200 ml, determined by WDM, were used as a threshold defining sustained 

BCRL in 85 women 24 months post-surgery (65).  Accordingly, 19 (22.4%) had BCRL at 24 months. 

Contrastingly, based on two inter-arm circumference measurements made at 6 months post-surgery 

differing by ≥ 2 cm, the calculated probability of sustained BCRL at 24 months was 60%.     

 

BCRL ASSESSMENTS WITH BIOIMPEDANCE SPECTROSCOPY (BIS) 

BIS refers to measuring electrical impedance at multiple frequencies. This method is widely used but it 

has been argued that it is not a proper substitute for volumes or for localized assessments of limb 

lymphedema and is also not applicable to other body areas (49). Contrastingly, it has been argued that it 

should be adopted as a gold standard (66). In some quarters it has become common to use a surrogate 

parameter called the L-Dex (67). There is some controversy whether this parameter and its threshold for 

BCRL is adequate (68) 

 

BIS measurement details 

Application of a sinusoidally varying voltage causes a time-varying current that depends on frequency 

and the current’s pathway (Figure 3A). At low frequencies, cell membranes pass little or no current due 

to the membrane’s high electrical capacitance whereas at high frequencies current passes through the 

cell. As a consequence, the composite pathway may be represented by an equivalent electrical circuit 

(Figure 3B).  The quantities Re and Ri represent external and internal electrical resistances. These 

resistance values are inversely related to the amounts of extracellular water (ECW) and intracellular 

water (ICW) through which the currents flow. Because of the low electrical resistance of body fluids 

relative to other body components such as fat and connective tissue, the overall measured impedance (Z), 

which is the ratio of the voltage difference (V) to current (I), is strongly dependent on fluid content.  A 

schematized version of the measurement of arm impedance is shown in Figure 3C in which electrodes 

are illustrated in accordance with previously evaluated positioning (69).   

 

In Figure 3A, the applied voltage (red lines) causes an exciting current to flow (dashed lines). Right arm 

impedance is determined by the ratio of V (between right and left hands) divided by current (I). In 



practice, it is possible to separate components attributable to ICW and ECW. In assessing BCRL the 

concept is that excess arm fluid causes the affected arm to have a reduced impedance vs. a pre-surgery 

baseline or vs. the contralateral arm. Devices are available for such measurements (Impedimed Ltd, 

Brisbane, Australia). One version (model SFB7) uses 256 frequencies that range between 3-5 KHz (low 

frequency) to 1000 KHz (high frequency). Use of multiple frequencies allows extrapolations to evaluate 

theoretical zero and infinite frequencies based on Cole-Cole plots (70, 71) that describe resistance vs. 

reactance as a function of frequency (72). These yield estimates of ECW and ICW.  

 

To determine changes only in ECW, which is the dominant fluid change compartment associated with 

lymphedema,  multiple frequencies are much less important and a single frequency of less than 30 KHz 

(73) may be sufficient. An excellent correlation between single frequency and BIS--determined values 

was obtained for frequencies ≤ 50 KHz (74). However, whether using single or multiple frequencies, 

such measurements may not capture the full lymphedema picture because of a non-measured contribution 

of bound water (75, 76). Some BIS technology is now incorporated in a system allowing BIS 

measurements while standing.    

 

BCRL thresholds based on BIS  

Impedance measurements have been used for many years with applications ranging from studying 

peripheral vasculature (77) to cardiac assessments with impedance cardiography (78) . However, its early 

description in the assessment of lymphedema can be traced to the early-to mid-1990’s (79, 80). BCRL 

thresholds were originally based on inter-limb impedance ratios obtained in healthy persons 

(dominant/non-dominant) arms, with thresholds defined as inter-arm impedance ratios (contralateral/at-

risk) exceeding a mean ratio + 3SD as determined in 60 healthy women (81). The mean and SD of this 

healthy ratio was 0.964 ± 0.034 that led to a threshold of 1.066. Strictly speaking, this threshold applies 

to detecting BCRL in women in whom their dominant arm was at-risk. An adjustment to this threshold 

ratio made for women whose at-risk arm was their non-dominant arm was reported as 1.139 (82). The 

use of the 3SD threshold is arbitrary but represents a conservative estimate that yields a better sensitivity. 

This threshold was refined from measurements in 172 healthy women in which dominant/non-dominant 

impedance ratios were 0.986 ± 0.040 yielding a threshold of 1.106.     

 

BCRL ASSESSMENTS BASED ON TISSUE DIELECTRIC CONSTANT (TDC) 

The term tissue dielectric constant (TDC) was coined in 2007 (24) to represent the value of the relative 

permittivity of skin-to-fat tissue measured in vivo using the open-ended coaxial line method (83-85). To 



assess edema or lymphedema, it’s use is based on the fact that its value strongly depends on tissue water 

content (86-88). In contrast to lymphedema assessment methods useful only for limbs, TDC 

measurements are localized and usable to measure skin water or skin-to-fat water at most anatomical 

sites including breast (20, 89) and trunk (9, 90).  Tissue dielectric properties are dependent on their water 

content and use of the Debye relationship can describe frequency dependence of tissue dielectric 

properties (91, 92). In this formulation the real part of a complex permittivity (e*) is denoted as e’ and 

its ratio to a vacuum’s permittivity (e’/e0) is relative permittivity (er). From a physical perspective, tissue 

permittivity may be thought of as the electric flux density (D) produced when the tissue experiences an 

applied electric field (E). In this formulation, the permittivity or TDC may be defined as the ratio of the 

flux density produced to the electric field causing it (e’ = D/E).   

 

TDC measurement details 

TDC is measured by touching the skin with a probe that has concentric inner and outer electrodes 

(conductors) that functions as an open-ended coaxial line (Figure 4A-top). The probe inserts a 300 MHz 

electric field from a battery-operated control box or within the probe itself for a compact version (Figure 

4B -bottom). One of the multiprobe types is shown in Figure 4B-top. For both, a time-varying electric 

field penetrates the tissue (Figure 4A-bottom). For a given frequency, the depth of penetration depends 

on the probe’s radial dimensions (93, 94) with larger diameter probes penetrating deeper (95). Some 

incident electromagnetic energy is reflected (Figure 4C) and from an analysis of this component, TDC 

is determined via algorithms based on the physics of the process (85).  

 

Devices are available (Delfin Technologies, Kuopio, Finland) that provide probes for effective 

measurement depths between 0.5 mm and 5.0 mm (multiprobe system) or fixed depths (compact 

versions). In some tissues, TDC values depend on measurement depth because of depth-dependent tissue 

heterogeneity (96, 97). Increased fat with increasing depth tends to lower the TDC value due to low water 

content of fat (87, 98). Variations in TDC values are also expected based on sex (99-101), age (102, 103), 

body habitus (104), and at different anatomical sites along the arm (105, 106). These normal biological 

variations do not importantly impact TDC use as a lymphedema assessment method because of various 

normalization processes. For unilateral BCRL, inter-arm (107, 108) or inter-trunk (9, 10) or inter-breast 

(20, 109) ratios are used with the added advantage that specific localized targets can be tracked.  The 

method permits assessing head-and-neck-related lymphedema (110) and lower extremity lymphedema 

(111, 112) based on individualized inter-site normalizations.         

 



BCRL thresholds based on TDC  

TDC measurements to a depth of 2.5 mm in 30 healthy pre- and 30 post-menopausal women yielded an 

inter-arm TDC ratio of 1.040±0.040 vs. 1.640±0.300 in 18 patients with BCRL (24). In that study, no 

healthy control had an inter-arm ratio as great as 1.200 and no patient had a ratio as low as 1.200. It was 

suggested that an inter-arm TDC-ratio of 1.200 should be a BCRL threshold-value. Had they used a 

threshold based on 3SD greater than the mean, it would have been 1.160. Other work supported the 1.200 

threshold ratio (113). Inter-arm TDC-ratios were compared between 60 healthy women and 30 patients 

with unilateral BCRL (114). The healthy group’s inter-arm TDC-ratio (dominant/non-dominant) was 

1.006±0.085 with a 3SD TDC-threshold-ratio of 1.26. This was initially used to define arm BCRL and 

were insignificantly affected by patient body mass index , age, measurement depth (96, 108) or hand-

dominance (115). Subsequent inter-side measurements made with a compact-type TDC device in 112 

breast cancer survivors without BCRL had at-risk to contralateral side ratios for forearm, upper arm and 

middle lateral thorax of 1.00±0.09, 1.01±0.15, and 1.06±0.10, respectively (90). These ratios differed 

from those similarly measured in 78 breast cancer survivors diagnosed with BCRL in whom 

corresponding inter-side ratios were 1.29±0.36, 1.25±0.41, and 1.07±0.12, respectively (90). In this 

study, time since breast surgery was 8.4±6.7 years with 12.8±8.7 nodes removed. The non-BCRL control 

patients were 6.9±6.7 years post-surgery and had 6.1±7.3 nodes removed. Based on a 3SD threshold for 

control ratios, an inter-arm BCRL threshold may be calculated as 1.27, 1.46 and 1.36 for forearm, upper 

arm and thorax.  A slightly lower thorax-to-thorax inter-side ratio of 1.38 has been reported from 

measurements on 120 women awaiting breast cancer surgery (10). A reference range for inter-hand TDC 

ratios has been determined via measurements in 70 healthy women to be 1.326 (116).  

 

IMAGING-BASED MEASUREMENT METHODS 

There have been several reports describing efforts to use 3-D photography and whole-body scanning 

systems to assess arm volumes (25-27, 117-120). Future progress in these areas is likely but currently 

are probably not suitable for routine clinical application. Ultrasound provides an additional potential 

diagnostic modality. It has been used to detect changes in cutaneous water (121, 122) and thickness 

changes (32, 123)  and, when used in combination with shear wave elastography (124-126), shows 

promise to assess BCRL features based on cutaneous and subcutaneous dermal thickening and stiffness 

increases detectable by increased shear-wave velocity resulting from an increased shear modulus.  

Magnetic resonance imaging (MRI) is another imaging modality with potential efficacy in characterizing 

aspects of BCRL. A recent study used a multi-echo spin echo protocol to evaluate T2-relaxation times in 

upper arms of women with and without BCRL (127). On the basis that these T2 values reflect relative 



tissue fluid content, a 7-13% greater fluid amount in BCRL arms was reported.  However, major 

limitations of MRI include its cost and accessibility and the absence of currently defined diagnostic 

threshold criteria. Another promising approach is that of non-contrast magnetic resonance lymphography 

(NMRL) that visualizes lymphatic vessels (128, 129) for which a partial scoring system has recently been 

suggested (130).  However, as with any MRI-related approach, cost, required patient time for 

measurement, and availability are major limitations when compared with the portable hands-on methods 

of measurement previously discussed. However, MRI-related procedures can valuably add to the 

understanding of lymphatic physiology and pathophysiology as in BCRL.  

 

CONCLUSION 

It has been long recognized (48, 49) that in addition to changes in interstitial fluid content accompanying 

developing lymphedema, there are progressive changes in tissue content, structure, and physical 

properties. Such changes include increases in arm fat, muscle, and bone as has been demonstrated via 

dual energy x-ray absorptiometry (DXA) in a group of 18 women with BCRL (131). It is thus likely that 

such complex changes, that do contribute to arm volume increases, will not directly be reflected as 

decreases in measured arm impedance. These complexities have been more recently investigated using 

MRI (132) in which excess fat volume was observed in both intra- and inter muscular compartments of 

seven patients with BCRL. An increasing relative amount of fat accumulation would increase measured 

arm impedance even though arm volume was increasing further suggesting a limitation to BIS tracking 

in such cases. Other factors to be considered relevant to BCRL portable or semi-portable measurement 

techniques is their relative initial cost, continuing supply needs and operating costs, maintenance needs, 

ease of use, and difficulties with measurement.  Based on such considerations, the relatively non-portable 

Perometer system cost (350NT) of at least $ 33,000 may be most useful for high volume screening 

facilities. Contrastingly, the hand-held TDC device, costing about $4000 with no subsequent operating 

costs, may be most useful for rapid routine physician or therapist initial detection and follow-up 

assessments of localized BCRL or for such measurements at any other anatomical site related to BCRL 

such as breast or thorax. Use of BIS may also be most useful for high volume screening and follow-up 

purposes in which sensitivity to small-to-moderate free and bound water increases are not important. 

Initial unit cost is about $8000 with a continuing electrode cost per patient. A comparison between BIS 

and TDC methods in 100 women with BCRL has reported TDC having a greater sensitivity at detecting 

early lymphedema (133). This is in part due to lymphedema that is more superficial. They also suggest 

complementary use of TDC and volume assessments and indicate a number of practical advantages of 

TDC. These are reported to include the contradictory use of BIS in patients who are pregnant, have 



pacemakers or metal implants and patients being in contact with a metal surface. However, a case has 

been put forward that BIS should be considered as a gold standard for assessing limb lymphedema (66) 

and a summary of historical estimates of its sensitivity and specificity have recently been reported (18). 

From the point of view of cost, tape measure procedures with volume conversion and limb volumes via 

water displacement require the least for equipment, but measurement time and patient acceptance need 

to be considered. Tape measurements are well accepted by patients but may require extended therapist 

measurement time. In the case of water-displacement measurements, patient positioning and discomfort 

as with all methods are to be considered. The shorter the required measurement time and the less intrusive 

to the patient, the better tolerated is the measurement process.    
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Figure 1. Illustrating arm circumference measurement with a tape measure. The arm circumference 

is pictured being measured with a tape measure that is equipped with a tension gauge so that 

measurements at multiple arm sites are made with uniform tension. If two longitudinal separated sites 

have their circumferences measured the volume of the limb between these segments can be reliably 

calculated using geometric formulas.   

 

 

 

 

 

 



 

Figure 2. Illustrating automated optoelectronic measurement of arm circumferences. A limb (arm 

or leg) is placed within a movable frame that contains infrared light sources that illuminate the limb and 

allow acquisition of limb projected perpendicular dimensions D1 and D2. From these measurements the 

cross-sectional area of the limb slices is calculated for slices of about 2 mm in length. The sum of these 

slices is used to calculate the limb volume.  

 

 

 

 

 

 

 



  

Figure 3. Illustrating basic elements of bioimpedance spectroscopy procedure. A, Applied low 

frequency currents do not well penetrate cells due to the membrane capacitance whereas high frequency 

currents do penetrate allowing for an estimate of intra and extracellular water. B, An approximate 

equivalent electrical circuit depicting the various elements of the cellular and extra-cellular current 

pathways. C, Illustrates one configuration of the way in which the excitation and measuring electrodes 

are applied. The current (I) flows as indicated in the dashed pathway and the voltage difference is 

measured as V. From these values the arm impedance Z is calculated as the ratio of V/I.  

 

 

 



 

Figure 4. Basic principle and elements of tissue dielectric constant (TDC) measurements of 

BCRL. A, Cross-section of the TDC measurement probe surface and an illustration of the electric field 

lines that penetrate the skin. B, Illustrates the placement of two different probe systems onto the skin 

surface. The top probe is connected to a control box that generates the 300 MHz signal and also 

processes the reflected wave as conceptualized in C. The bottom part of B shows the compact probe 

that has all electronics and processing within the hand-held device.  

 


