Limb Volume Assessments Based on Circumference Measurements: Possibilities and Limitations

Dr. Harvey N. Mayrovitz
College Medical Sciences
Nova SE University
Ft. Lauderdale FL
mayrovit@nova.edu

Basics of the Method

Limb Volume from Girth Measures

Circumferences
@ 4-12 cm
intervals

Manual

Automated

Geometric Model or Algorithm

Truncated
Cone Model
(Frustum)

Dr HN Mayrovitz

Measurement Issues Requiring Careful Attention

Minimizing Method Error

Mark in Relation To FLAT Surface

NOT along limb

Source of large Follow-up error

Minimizing Method Error

Start Point
Mid-malleolus
L = 0 cm

- Measure with tape
 90° to limb length
- Overlap tape with interval mark in middle.
- Pull to fixed tension

Minimizing Method Error

Highest arm girth at axillary crease.
Stiff paper at axilla determines level

Similar procedure used at groin Girths higher than these are angled and are inaccurate

Calculation Algorithm Issues

What if limb is not fully circular?

Effect of Degree of Eccentricity

General Frustum
Calculation
Model

 α = ratio of smaller to larger dimension

<5% difference for ratios > ≈ 0.6
So OK for most Arms & Legs
BUT Not OK for Hands or Feet

Metric Measurements

Hand (60)

Foot (60)

Water Displacement Volumes

Analytical Comparisons: Metric vs. H₂O

Algorithm vs. Water Displacement

Volume by water displacement (V_w, ml)

Algorithm vs. Water Displacement

Volume by Water Displacement (Vw, ml)

Limits of Agreement (%)

Mean Volume (V_W + V_M)/2 in ml

	Difference	LOA	95% CI
(V _W -V _M)/V _W (%)	-0.9 ± 4.9%	± 9.8%	+11.2 to -12.9

Limits of Agreement (%)

Mean volume $(V_w + V_m)/2$ in ml

Difference LOA 95% CI $(V_M-V_W)/V_W$ (%) 0.21 \pm 4.64 \pm 9.28 +11.6 to -11.2

Manual or Automated?

\$
Space
Pt. Mobility
Pt. Flexibility

Time Measurer

Limb Volumes in Liters

Automated Manual %Diff Legs N=142 7.16 ± 0.17** 6.90 ± 0.17 4.14 ± 0.54 Arms N=42 2.70 ± 0.09** 2.53 ± 0.09 6.97 ± 1.18

Small (but significant) difference between volumes
 Automated → slightly larger absolute volumes

BUT: No significant difference in Edema volumes

LEGS (N = 32 Pairs)		ARMS (N = 24 Pairs)	
Percentage Edema		Percentage Edema	
Automated	Tape Measure	Automated	Tape Measure
14.2 ± 3.5	15.4 ± 4.4	19.5 ± 4.7	19.8 ± 4.6

What segment length? Compare 4 vs. 8 vs. 12 cm

Leg Volumes (N = 140) and Reductions with Treatment based on Different Segment Lengths

	Volume		Volume Reduction		
	(ml)		ml	%	
Segment	Pre	Post			
Length	Treat	Treat			
4 cm	6658 ± 2491	5453 ± 1954	1204 ± 775	17.6 ± 7.0	
8 cm	6681±2511	5477 ± 1969	1205 ± 803	17.5 ± 7.2	
12 cm	6762±2560	5570 ± 2013	1248 ± 823	17.9 ± 7.3	

Insignificant difference between segment lengths

How to take into account the "Control" limb?

If no change in contralateral "control" limb then need only measure it once

BUT
Control limb
DOES CHANGE!
Need to
measure both
limbs to track
changes and
outcomes!

Edema Volume = 100* (Affected – Control)/Control

Research Study Outcomes		Reduction in Edema volume (%)		
	Pre-Tx Edema Volume (liters)	Based on pre and post tx control limb values	Based on only pre tx control limb values	
Arms (40)	0.94 ± 0.54	39 ± 26 –	49 ± 31	
Legs (75)	2.3 ± 0.2	47 ± 35	60 ± 37	

Using only pre-treatment control limb value severely overestimated outcomes

Conclusions

- Use of girth measurements to obtain limb volumes can be a useful and reliable method to assess changes in edema and lymphedema over time
- Its accuracy and reliability depend on careful attention to detail in the measurement process
- Its utility and versatility is enhanced via the use of a suitable calculation algorithm that appropriately takes into account hand or foot volumes
- Most studies indicate this volume method compares well with other methods including H₂O displacement but the various methods are not interchangeable.

My sincere thanks to Dr. Gyozo Szolnoky for his heroic efforts on my behalf!