
Doctor, how good is that test? A primer on predictive value

Disease Detection via Diagnostic Testing

Suppose we are interested in detecting the presence of <u>disease X</u> based on some <u>diagnostic test Z</u>.

Type of Question to be Considered

A 75 year old female (Mary) without symptoms has a screening mammogram at a center that reports an historical test sensitivity of 80% and a specificity of 90%.

Mary's test turns out to be positive.

What is the chance that Mary has Breast Cancer?

Disease Detection via Diagnostic Testing

There are three basic things that we need to know first

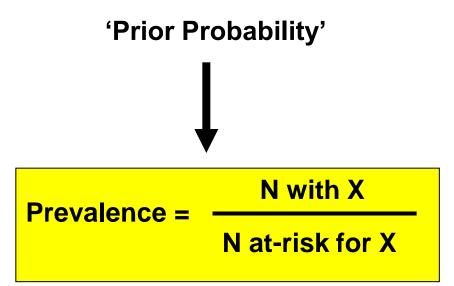
- **1.** The **sensitivity** of diagnostic test Z
- 2. The <u>specificity</u> of diagnostic test Z
- 3. The prevalence of disease X

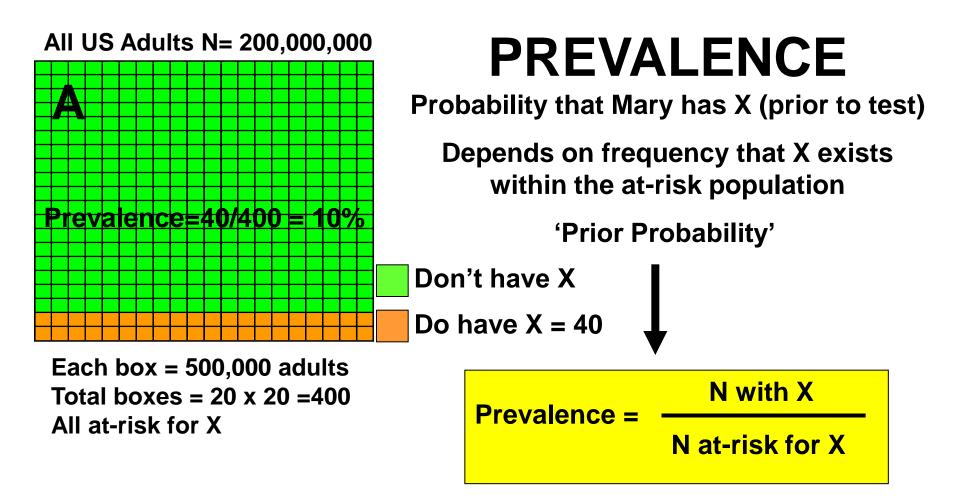
(in the population to which our patient belongs)

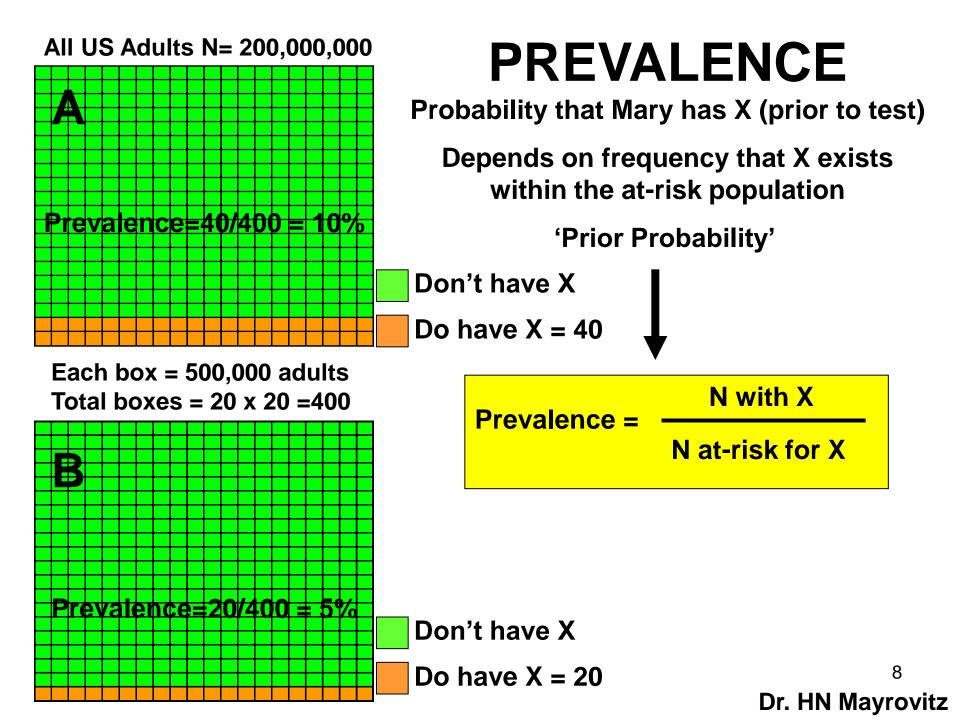
Disease Detection via Diagnostic Testing

There are three basic things that we need to know first

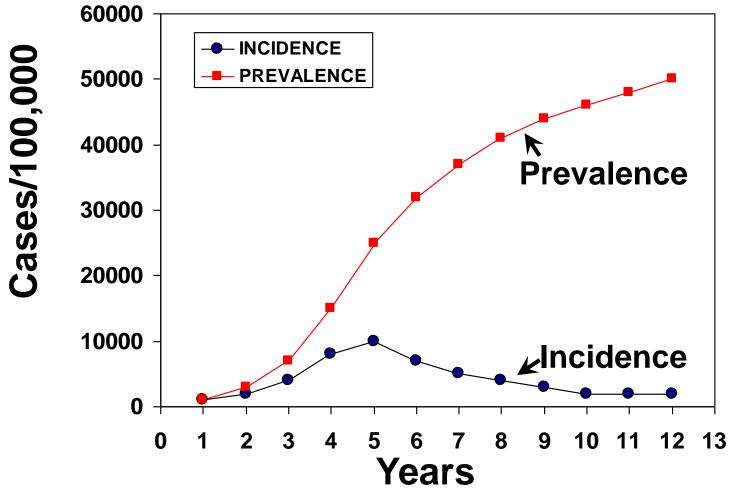
- **1.** The **sensitivity** of diagnostic test Z
- 2. The <u>specificity</u> of diagnostic test Z
- 3. The prevalence of disease X


(in the population to which our patient belongs)

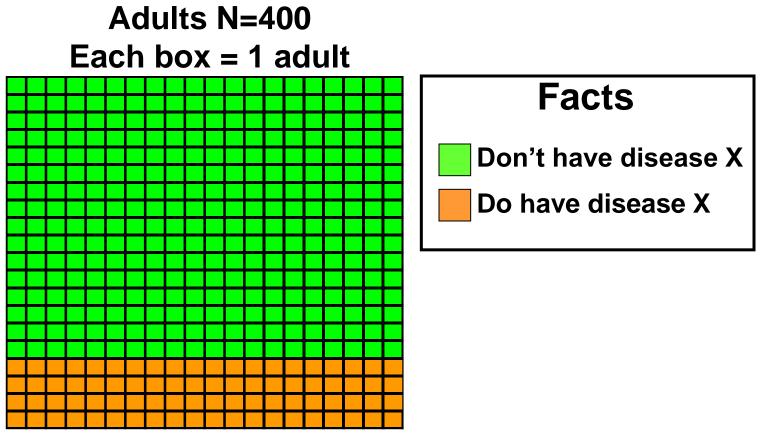

Sensitivity: Probability that Z detects X when X is present ('sick')
Specificity: Probability that Z does not detect X when X is not present ('well')
Prevalence: Probability of Mary having X prior to testing

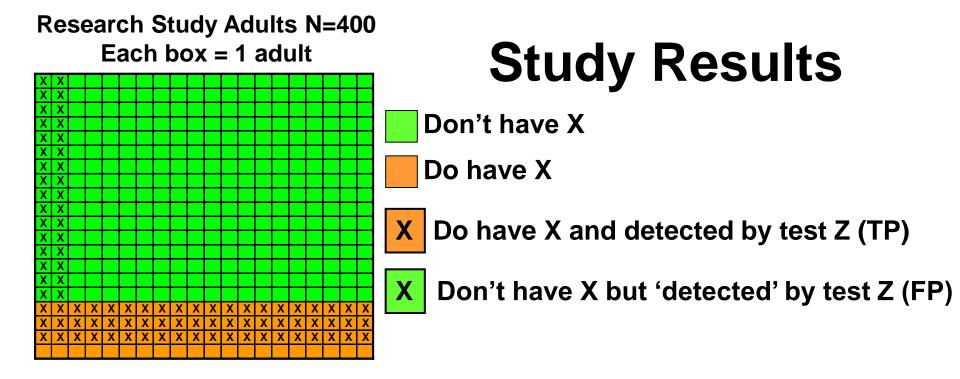

PREVALENCE

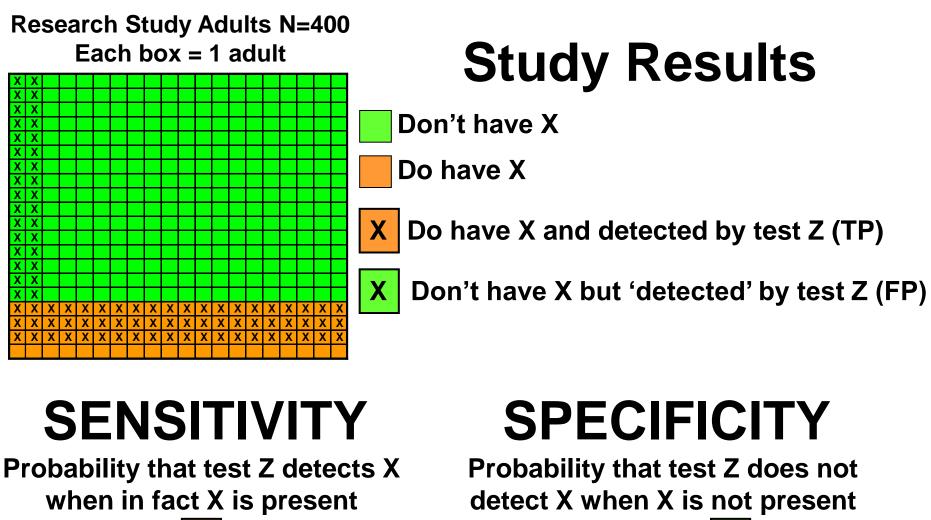
Probability that Mary has X (prior to test)


Depends on frequency that X exists within the at-risk population

Prevalence vs. Incidence

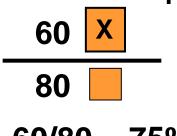



Dr. HN Mayrovitz


9

Hypothetical Research Study

Evaluate the Sensitivity and Specificity of a Diagnostic Test Z


320- 32

320

288/320 = 90%

12

Dr. HN Mayrovitz

60/80 = 75%

Possible Results of a 'Diagnostic' Test

 $FP \rightarrow Detects$ something that does NOT exist

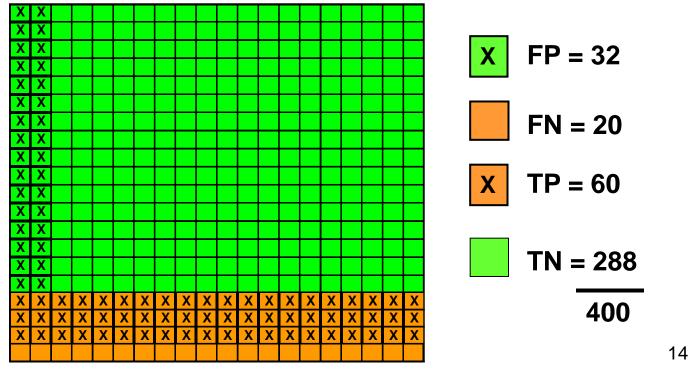
FN → Does NOT detect something that DOES exist

 $TP \rightarrow Detects$ something that DOES exist

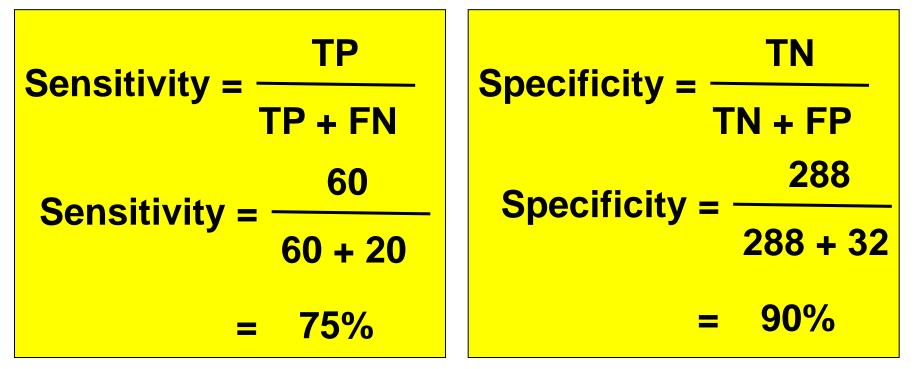
TN \rightarrow Does NOT detect something that does NOT exist

 $FP \rightarrow False Positive FN \rightarrow False Negative TP \rightarrow True Positive TN \rightarrow True Negative$

Possible Results of a 'Diagnostic' Test


 $FP \rightarrow Detects$ something that does NOT exist

FN → Does NOT detect something that DOES exist


 $TP \rightarrow Detects$ something that DOES exists

TN \rightarrow Does NOT detect something that does NOT exist

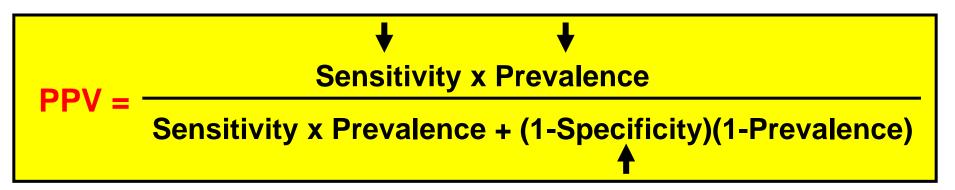
 $FP \rightarrow False Positive FN \rightarrow False Negative TP \rightarrow True Positive TN \rightarrow True Negative$

Features of a 'Diagnostic' Test Itself

<u>High Sensitivity</u> Implies that: If condition is present test has high probability of so indicating

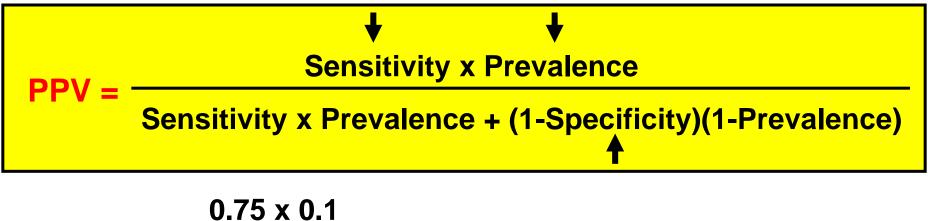
The null hypothesis (NH) for this is: *'patient has the condition'* so has low type I error (α) \rightarrow Low probability of rejecting the NH when NH is TRUE <u>High Specificity</u> Implies that: If condition is not present test has high probability of so indicating

The null hypothesis (NH) also is: *'patient has the condition'* so has low type II error (β) \rightarrow High probability of rejecting the NH when NH is FALSE


15

What is the probability that a person with a *positive* test actually has the condition?

<u>Positive Predictive Value</u> (PPV) of the diagnostic test as applied to the person


What is the probability that a person with a *positive* test actually has the condition?

<u>Positive Predictive Value</u> (PPV) of the diagnostic test as applied to the person

What is the probability that a person with a *positive* test actually has the condition?

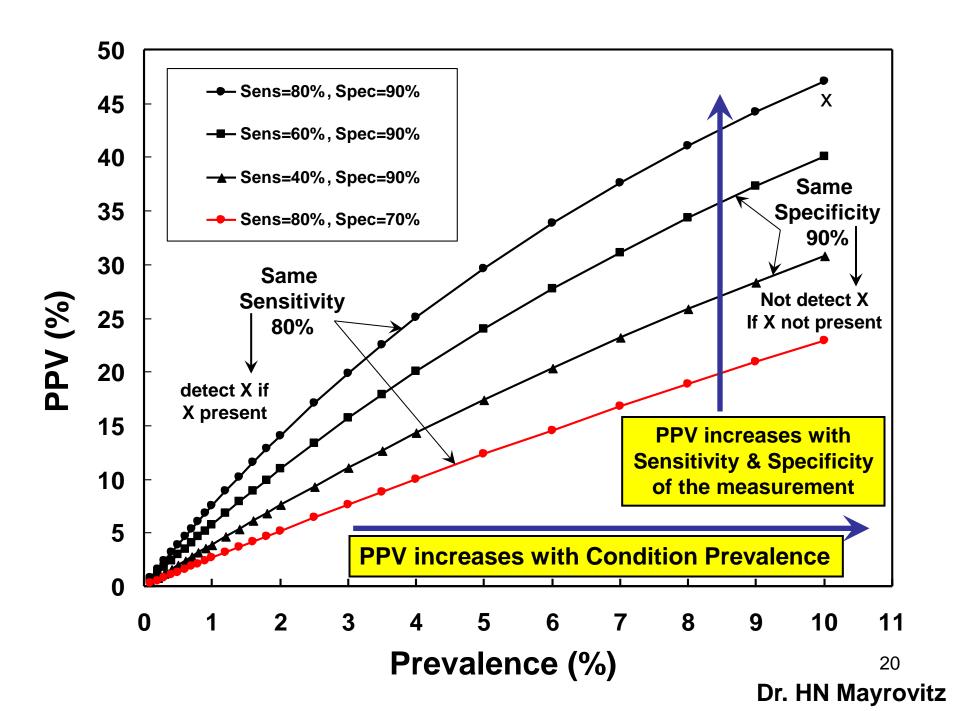
<u>Positive Predictive Value</u> (PPV) of the diagnostic test as applied to the person

$$PPV = \frac{0.75 \times 0.1}{0.75 \times 0.1 + (1-0.9) (1-0.1)} = 45.5\%$$

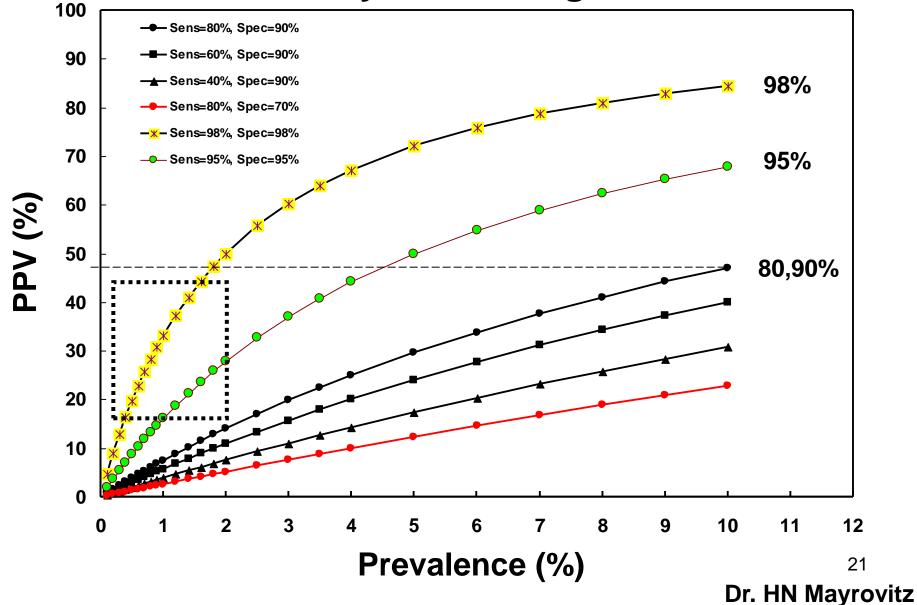
A positive test would mean there is less than a 50% chance she has the condition

What is the probability that a person with a *negative* test does NOT have the condition?

<u>Negative Predictive Value</u> (NPV) of the diagnostic test as applied to the person


Specificity x (1 – Prevalence)

Specificity (1-Prevalence) + Prevalence (1-Sensitivity)


$$NPV = \frac{0.90 \times (1 - 0.1)}{0.90 \times (1 - 0.1) + (0.1) (1 - 0.75)} = 97\%$$

NPV

A negative test would mean there is 97% chance that she does not have the condition

At low prevalence PPV falls dramatically even at high S & S!

PPV Example – Screen Mammograms

Sensitivity x Prevalence

PPV =

Sensitivity x Prevalence + (1-Specificity)(1-Prevalence)

What is the probability that a white women age 55 who has a positive screening test actually has breast cancer?

What are sensitivity and specificity of mammography?

Kavanagh AM, Giles GG, Mitchell H, Cawson JN. The sensitivity, specificity, and positive predictive value of screening mammography and symptomatic status. Journal of medical screening 2000;7(2):105-110.

•100,000 + women >=40 years of age
• Asymptomatic first screens no family Hx of BC
Sensitivity: 75.6% → 75%
Specificity: 94.9% → 95%

PPV Example – Screen Mammograms

Sensitivity x Prevalence

PPV =

Sensitivity x Prevalence + (1-Specificity)(1-Prevalence)

What is the probability that a white women age 55 who has a positive screening test actually has breast cancer?

Sensitivity = 75% Specificity = 95% Prevalence=?

Estimated prevalence percent ^a on January 1, 2006, of the SEER 11 population diagnosed in the previous 16 years By Age at Prevalence, Race/Ethnicity and Sex
2.3%

Race/Ethnicity	Sex	Age Specific (Crude)										Age-Adjusted ^f
		All Ages	0-9	10-19	20-29	30-39	40-49	50-59	60 69	70-79	80+	All Ages
All Races ^Q	Both Sexes	0.5773%	-	0.0002%	0.0057%	0.0814%	0.4260%	1.1244%	1.9183%	2.4904%	2.8998%	0.5857%
	Males	0.0063%	-		-	0.0004%	0.0023%	0.0093%	00242%	0.0412%	0.0550%	0.0075%
	Females	1.1379%	-	0.0004%	0.0116%	0.1647%	0.8490%	2.1882%	6274%	4.3807%	4.4781%	1.0696%
White [©]	Both Sexes	0.6330%	-	0.0002%	0.0053%	0.0808%	0.4294%	1.1649%	2.0317%	2.6780%	3.0991%	0.6162%
	Males	0.0068%	-			0.0002%	0.0022%	0.0091%	0.0241%	0.0435%	0.0591%	0.0077%
	Females	1.2596%	-	0.0004%	0.0110%	0.1671%	0.8699%	2.3024%	3.8921%	4.7584%	4.7661%	1.1365%
Black ^C	Both Sexes	0.3941%	-		0.0078%	0.0962%	0.4214%	0.9915%	1.6239%	2.0368%	2.3114%	0.5063%
	Males	0.0061%	-				0.0036%	0.0132%	0.0415%	0.0448%	0.0473%	0.0093%
	Females	0.7463%	-		0.0150%	0.1797%	0.7883%	1.8049%	2.8559%	3.3621%	3.4078%	0.8709%
Asian/ Pacific Islander [©]	Both Sexes	0.4222%	-	-	0.0059%	0.0726%	0.4106%	0.9699%	1.3902%	1.5756%	1.6294%	0.4308%
	Males	0.0034%	-					0.0067%	0.0106%	0.0230%	0.0266%	0.0040%
	Females	0.8155%	-		0.0118%	0.1404%	0.7865%	1.8153%	2.5596%	2.7136%	2.6856%	0.7801%
Hispanic <u>d</u>	Both Sexes	0.2191%	-	-	0.0046%	0.0554%	0.2939%	0.7737%	1.2684%	1.6101%	1.7243%	0.3870%
	Males	0.0013%	-	-	-	-	0.0010%	0.0048%	0.0081%	0.0152%	0.0200%	0.0029%
	Females	0.4495%	-		0.0100%	0.1191%	0.6046%	1.5030%	2.3360%	2.7707%	2.7149%	0.7060%

PPV Example – Screen Mammograms

Sensitivity x Prevalence

PPV =

Sensitivity x Prevalence + (1-Specificity)(1-Prevalence)

What is the probability that a white women age 55 who has a **positive** screen test actually has breast cancer?

Sensitivity = 75% Specificity = 95% Prevalence = 3.2%

PPV = 26.1%

There is about a 1 in 4 chance that she HAS BC

NPV Example – Screen Mammograms

NPV =

Specificity x (1 – Prevalence)

Specificity (1-Prevalence) + Prevalence (1-Sensitivity)

What is the probability that a white women age 55 who has a negative screen test does NOT have breast cancer?

Sensitivity = 75% Specificity = 95% Prevalence = 3.2%

NPV = 99.4%

There is a 99.4% chance that she does NOT have BC

A 75 year old female (Mary) without symptoms has a screening mammogram at a center that reports an historical test sensitivity of 80% and a specificity of 90%.

Mary's test turns out to be positive.

What is the chance that Mary has BC?

Questions or Comments?