Special Lecture – 11/08/2013

Hypertension – Dr. HN Mayrovitz

Arterial Blood Pressure (ABP) Major Factors Summarized

```
Sympathetic
        - Arteriole
• Hormones
MAP \sim Q x TPR + f(V/C)
     SV x HR
                   Renal
```

Hypertension = High Blood Pressure

So What's High?

Hypertension	
SBP (mmHg)	DBP (mmHg)
< 120	AND <80
120-139	OR 80-89
140-159	OR 90-99
>= 160	OR >= 100
· · · · · · · · · · · · · · · · · · ·	SBP (mmHg) < 120 120-139 140-159

MAP

< 93

93-106

107-119

> 120

If DBP is normal but SBP is high then called Isolated Systolic Hypertension

→ Decreased Arterial Compliance

Specific Known Hypertension Causes (Secondary Hypertension)

~ 10 % of Hypertension Patients

Remainder → Essential HTN

(Primary HTN)

Specific Known Hypertension Causes (Secondary Hypertension - Renal)

Specific Known Hypertension Causes (Secondary Hypertension - Other)

Overproduction of:

- adrenal Cortisol (pituitary/adrenal tumor-Cushings)
- adrenal E or NE (adrenal tumor Pheochromocytoma)
- thyroid hormones (Hyperthyroidism)
- parathyroid hormones (Hyperparathyroidism)
- aldosterone (adrenal tumor Aldosteronism)
- Aortic coarctation (narrowed aorta)
- Pregnancy-induced (preeclampsia)

Some ABP Determinants

- TPR
- Blood Volume
- Vascular Compliance

Resistance as a ABP Determinant

Blood Volume as an ABP Determinant

- 2. F-S
- + Volume
- + CVP
- + Filling
- + SV
- + CO
- + MAP

- 1. Mechanical
- + Volume
- + Pressure

Compliance Related V/C

Compliance as an ABP Determinant

Mainly Systolic and Pulse Pressure Effects

Renin – Angiotensin – Aldosterone System

Volume and ABP Changes via Effects of:

- Renin
- Angiotensin
- Antiduretic Hormone (ADH)
- Aldosterone

1. Renin – Angiotensin Main Pathways

2. Include Aldosterone as a Modulator of Na⁺ Retention and Urine Output

3. Include Effects of Antidiuretic Hormone ADH=Vasopressin as a Modulator of H₂O Excretion

Non-invasive Indirect Measurement

Oscillographic

Auscultation

ABP via Oscillographic Method

"Central Aortic Pressure"

Transmission and Reflection of Pulses

Transmission and Reflection of Pulses

Pulse Wave Velocity (PWV)

Earlier Reflection Arrival

Summary of Major Aspects

So – Standard BP by sphygmomanometry, though important and clinically useful only tells PART of the story

Aortic Central Pressure may be a more accurate risk assessment

Reasons have to do with pressure wave interactions that are most directly influenced by:

- A. Pulse wave speed (Artery compliance)
- B. Reflection amplitudes (Vasoconstriction state)

Both tend to increase with ageing and HTN

QUESTIONS?